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Abstract

Background

In many regions globally, buildings designed for harnessing heat during the cold exacerbate

thermal exposures during heat waves (HWs) by maintaining elevated indoor temperatures

even when high ambient temperatures have subdued. While previous experimental studies

have documented the effects of ambient temperatures on cognitive function, few have

observed HW effects on indoor temperatures following subjects’ habitual conditions. The

objective was to evaluate the differential impact of having air conditioning (AC) on cognitive

function during a HW among residents of AC and non-AC buildings using a prospective

observational cohort study.

Methods

We followed 44 students (mean age = 20.2 years; SD = 1.8 years) from a university in the

Greater Boston area, Massachusetts in the United States living in AC (n = 24) and non-AC

(n = 20) buildings before, during, and after a HW. Two cognition tests were self-administered

daily for a period of 12 days (July 9–July 20, 2016), the Stroop color-word test (STROOP) to

assess selective attention/processing speed and a 2-digit, visual addition/subtraction test

(ADD) to evaluate cognitive speed and working memory. The effect of the HW on cognitive

function was evaluated using difference-in-differences (DiD) modelling.

Findings

Mean indoor temperatures in the non-AC group (mean = 26.3˚C; SD = 2.5˚C; range = 19.6–

30.4˚C) were significantly higher (p < 0.001) than in the AC group (mean = 21.4˚C; SD =

1.9˚C; range = 17.5–25.0˚C). DiD estimates show an increase in reaction time (STROOP =

13.4%, p < 0001; ADD = 13.3%, p < 0.001) and reduction in throughput (STROOP = −9.9%,

p < 0.001; ADD = −6.3%, p = 0.08) during HWs among non-AC residents relative to AC resi-

dents at baseline. While ADD showed a linear relationship with indoor temperatures,
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STROOP was described by a U-shaped curve with linear effects below and above an opti-

mum range (indoor temperature = 22˚C–23˚C), with an increase in reaction time of 16 ms/˚C

and 24 ms/˚C for STROOP and ADD, respectively. Cognitive tests occurred right after wak-

ing, so the study is limited in that it cannot assess whether the observed effects extended

during the rest of the day. Although the range of students’ ages also represents a limitation

of the study, the consistent findings in this young, healthy population might indicate that

greater portions of the population are susceptible to the effects of extreme heat.

Conclusions

Cognitive function deficits resulting from indoor thermal conditions during HWs extend

beyond vulnerable populations. Our findings highlight the importance of incorporating sus-

tainable adaptation measures in buildings to preserve educational attainment, economic

productivity, and safety in light of a changing climate.

Author summary

Why was this study done?

• Heat waves (HWs) have devastating consequences for public health globally.

• Buildings can exacerbate temperature exposures during HWs by maintaining high

indoor temperatures overnight even when high ambient temperatures have subdued.

• Prior experimental studies have documented the effects of temperature on cognitive

function, but no field studies have observed how indoor temperatures during HWs

impact cognition, even though adults in the United States spend upwards of 90% of

their time indoors.

What did the researchers do and find?

• We evaluate the impact of having air conditioning (AC) during a HW on cognitive

function among residents of AC and non-AC buildings using a prospective, observa-

tional cohort study.

• A cohort of university students was recruited from 2 campus residence types—AC (n =
24) and non-AC (n = 20)—and followed over 12 consecutive days in the summer of

2016.

• Students living in non-AC spaces experienced significant decrements on cognitive

test performance. Results show an increase in reaction time (Stroop color-word test

[STROOP] = 13.4%, p< 0001; 2-digit visual addition/subtraction test [ADD] = 13.3%,

p< 0.001) and reduction in throughput (STROOP = −9.9%, p< 0.001; ADD = −6.3%,

p = 0.08) during HWs among non-AC residents relative to AC residents at baseline.
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What do these findings mean?

• Future studies are needed to understand the duration of these effects to determine how

the implications could extend to larger sectors of the population and could have signifi-

cant impacts on educational attainment, economic productivity, and workplace safety.

• Given that existing adaptation solutions (e.g., AC) represent a positive feedback loop

amplifying the effects of climate change, our findings highlight the need to provide sus-

tainable adaptation solutions to foster adequate cognition during extreme heat events.

Introduction

Heat waves (HWs) have devastating consequences for public health globally. Exposure to

higher temperatures results in the human body’s inability to thermoregulate, leading to both

indirect and direct health impacts, related to cardiovascular, respiratory, renal, cerebrovascu-

lar, and diabetes-related morbidity and mortality [1–6]. Estimates of heat-related mortality

vary by location and population. In the United States, extreme heat exposure is the leading

cause of death of all meteorological phenomena, responsible for over 7,000 deaths from 1999

to 2010 [7]. Previous studies have shown that heat-related mortality is punctuated by high-pro-

file acute events like the HW in Europe in 2003 that claimed 70,000 lives and India in 2015

that was responsible for 2,300 heat-related deaths [8]. As global temperatures warm, tempera-

tures that are currently thought of as extreme will become more common [9]. The changing

climate has important heat-related public health implications. Across the globe, 2016 has been

the warmest year in the past 200 years of recorded history [10], and a warmer climate in the

future is expected to result in tens of thousands of excess deaths per year in the US by the year

2100 [11]. In addition to increasing overall mean temperature, climate change is projected to

increase the frequency, duration, and intensity of HWs [12–15].

Historically, the public health impacts of HWs have been primarily conducted through epi-

demiologic studies using outdoor temperature records as the measure of exposure [16–18].

Adults in the US, however, spend about 90% of their time indoors [19], making past heat-

related health research subject to exposure misclassification if the outdoor temperature values

do not represent the indoor exposures. Evidence of the effects of extreme heat also stems from

controlled, laboratory chambers with experimental temperature regimes [20–22]. The impacts

of extreme heat are compounded in real life by behavioral factors that modify exposure [23–

25] (e.g., sleep, hydration, physical activity, or air conditioning [AC]).

Furthermore, assessing extreme heat impacts has focused, primarily, on vulnerable popula-

tions like the very young or the elderly. Yet the health effects of extreme heat events can be

experienced in the general population, resulting in subclinical symptoms, like cognitive func-

tion deficits [16,21,26]. A U-shaped response curve has been utilized to describe how expo-

sures to extremely low or high temperatures result in decreased cognitive performance

[16,21,27]. However, this has been based on findings from controlled, experimental settings or

by utilizing outdoor temperature as the exposure metric. Therefore, field studies in real-world

settings are needed to understand the relationship between extreme heat exposures in indoor

environments, health, and cognition while controlling for important behavioral factors that

affect exposure and risk.

Reduced cognitive function during a heat wave
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Our prospective observational cohort study examined relationships between indoor envi-

ronmental conditions, heat exposures, sleep, and cognitive function between young adults liv-

ing in central AC and non-AC residence halls on a university campus before, during, and after

a HW during the summer of 2016.

Methods

Study design

A cohort of university students was followed over 12 consecutive days (July 9–July 20, 2016)

in the Greater Boston, Massachusetts in the US. The study started with a baseline period of

5 days of seasonable outdoor temperatures (mean = 20.4˚C; range = 15.3–30.6˚C) before the

onset of a HW. We relied on the definition of HW used by the National Oceanic and Atmo-

spheric Administration (NOAA), in which a HW consists of a period of 2 or more days of

“abnormally high air temperature and humidity.” Our criteria for abnormally high tempera-

ture threshold was based on a daily maximum outdoor temperature (Tout,max) of 32.2˚C

(90˚F), which corresponds to the 91st percentile of average high temperatures in Boston dur-

ing the June to September period for 10 years prior to the study. The onset of the study was

based on meteorological forecasts indicating near-average summer temperatures for several

days, followed by a period of extreme heat, acknowledging that the study phase durations

would vary with the forecast. The observed weather conditions allowed for an uninterrupted

12-day study (July 9–July 20) comprising the following 2 periods: (1) an initial 5-day baseline

period of seasonable temperature and (2) the HW period, consisting of 5 days of abnormally

high temperatures (mean Tout,max = 33.4˚C; range = 27.8–35.6˚C) and a 2-day cooldown

(mean Tout,max = 28.1˚C; range = 27.8–28.3˚C).

Study participants

Students were assigned to their residences at the beginning of the summer and independently

from their enrollment in this study. Students were recruited from 2 campus residence types:

AC (n = 24) and naturally ventilated (non-AC, n = 20). AC study sites consisted of adjacent,

6-story buildings constructed in the early 1990s, with operable windows and central AC. The

non-AC study sites consisted of low-rise, Neo-Georgian-style buildings with thick masonry

walls constructed between 1930 and 1950 with an approximate 30% window-to-wall ratio. Pro-

spective participants received details of the study at informative meetings held at each of the

study sites. Recruitment occurred on a rolling basis until recruitment targets were met; the

research team only required that groups from both building types were balanced in terms of

student age and sex. Inclusion criteria required that the student was at least 18 years of age,

had no history of alcohol or drug abuse, no history of or current pregnancy, and met a set of

predetermined health conditions (was not using oral or intravenous antibiotics or chemother-

apy, was not using prednisone or NSAIDs, did not currently have acute infectious disease

[cold/flu, gastroenteritis, etc.], had not been previously self-diagnosed with a chronic inflam-

matory or autoimmune disease, was not taking any prescription sleep medications, and had

no previously diagnosed sleep disorder). There were no significant differences in the preva-

lence of preexisting health conditions between students living in naturally and mechanically

ventilated buildings (Table 1). Students chose their summer housing preferences on a first-

come, first-serve basis in a manner that was not expected to be associated with exposure or

outcome. Therefore, we assumed that these populations were exchangeable and that living in

any one type of ventilation was independent of the student’s demographics, health status, or

potential health outcomes. The Institutional Review Board (IRB) at the Harvard T.H. Chan

School of Public Health approved this study.

Reduced cognitive function during a heat wave
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Survey instruments

Baseline survey. Consented students completed a baseline survey on demographics

(e.g., age, gender, height, weight, smoking status, race, ethnicity, and use of contacts, hear-

ing aids, and diuretics) and sleep quality during the week prior to the study. The survey

included questions on perception of and satisfaction with indoor environmental quality (i.e.,

thermal comfort, indoor air quality, acoustics, and lighting) in the bedroom of their summer

residence.

Daily survey and cognitive tests. Students were sent an electronic survey on their smart-

phones every morning and were instructed to complete it after waking up, while inside their

bedroom. The survey started with a battery of 2 self-administered cognition tests: cognitive

speed and inhibitory control were evaluated by the Stroop color-word test (STROOP), and

cognitive speed and working memory were assessed by a 2-digit, visual addition/subtraction

test (ADD). These tests have been used previously based on their sensitivity measuring the

effects of hyperthermia on executive control reaction time and working memory [22,27–29].

The effects of hyperthermia on similar executive function and working memory tests have also

been studied in combination with evaluations of activity and functional connectivity in the

brain [26,30]. STROOP entailed 24 trials of congruent, incongruent, and neutral word-color

stimuli, shown at the center of the student’s smartphone display. The student was expected to

correctly identify the color of the displayed word and tap 1 of the 4 buttons (i.e., red, blue,

green, or yellow) on the touch screen corresponding to the shown color. ADD had 10 mathe-

matical addition and subtraction trials of 2-digit numbers, answered via the smartphone touch

screen keyboard. Five performance metrics were obtained from the cognitive tests: cognitive

speed on the STROOP incongruent trials and ADD were assessed by reaction time in millisec-

onds for each individual trial, cognitive throughput on the STROOP incongruent trials and

ADD were assessed by daily averages on the number of correct responses per minute, and

inhibitory control on STROOP was calculated as the difference between incongruent reaction

time and daily mean congruent reaction time. To eliminate any learning effect throughout the

study, each metric was transformed to its z-score by subtracting the daily mean of all students

and dividing it by the daily SD of all students. For both tests, an increase in reaction time z-

score and a decrease in throughput z-score represent a deterioration in cognitive function. No

other cognitive tests were administered to the students.

Table 1. Baseline demographics of study participants: Students living in Greater Boston area, MA during summer

2016.

No-AC (n = 20) AC (n = 24) p-value

Age (years) 20.3 ± 2.4

(18–29)

20.1 ± 1.1

(18–23)

0.72

Race, nonwhite (%) 14 (66.7) 13 (54.2) 0.39

US-born (%) 13 (61.9) 18 (75.0) 0.34

Male (%) 11 (52.4) 12 (50.0) 0.87

Excellent self-assessment of health 8 (38.1%) 6 (25.0%) 0.34

Very good to good self-assessment of health 13 (61.9%) 17 (70.8%) 0.53

No history of sleep medications (%) 19 (90.5) 24 (100) 0.12

Moderately to very physically active (%) 17 (80.0) 20 (83.4) 0.83

Smoke (%) 3 (15%) 0 (0%) 0.17

Use of diuretics 1 (5%) 0 (0%) 0.92

Abbreviation: AC, air conditioning.

https://doi.org/10.1371/journal.pmed.1002605.t001

Reduced cognitive function during a heat wave

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002605 July 10, 2018 5 / 20

https://doi.org/10.1371/journal.pmed.1002605.t001
https://doi.org/10.1371/journal.pmed.1002605


STROOP and ADD trials were identical and were presented in the same order to all stu-

dents on a given study day, but they varied from day to day while keeping the proportion of

congruency and mathematical operands constant (S1 Fig). The cognitive tests were developed

as JavaScript testing engines for the Qualtrics online survey environment (Qualtrics, Provo,

UT). Other researchers have demonstrated the usefulness of JavaScript-based online reaction

time test engines [31]. The engines have chronometry and answer-grading capabilities embed-

ded. To reduce the probability of timing errors due to varying communication speeds with the

survey environment server, a fixed delay was introduced between consecutive trials. A neutral

legend at the center of the screen was shown as a fixation point during the delay period.

The daily survey also included questions related to the past 24 hours on the following items:

indoor environmental quality, sleep quality, intake of liquids and caffeinated beverages, and

light exposure from electronic devices after 8 PM.

Hydration and subjective sleepiness log

Daytime hydration was obtained via a text messaging server (Twilio, San Francisco, CA) ask-

ing for the liquid intake in number of glasses of water in the past 4 hours, and self-reported

sleepiness was obtained using the Karolinska Sleepiness Scale (KSS) at 12 PM, 4 PM, and 8 PM

each day. In an effort to standardize the hydration reporting units, students received a visual

conversion scale to equate common glass and water bottles to number of glasses of approxi-

mately 8 fluid ounces (296 mL). A categorical variable based on the median daily water con-

sumption (1 = less than or equal to 1 L/day; 0 = more than 1 L/day) was used as a surrogate for

individual hydration. The KSS consists of a 9-point Likert scale used to subjectively assess the

student’s sleepiness at the time of questioning [32]. The same questions for hydration and

sleepiness were asked in the daily survey right after completion of the cognitive tests.

Environmental and physiological measures

An indoor environmental quality monitor (Netatmo, Paris, France) was installed in each stu-

dent’s bedroom. The monitor measured indoor dry-bulb temperature (˚C), relative humidity

(%), CO2 concentration (ppm), and noise (dBa). The monitors were installed by the study

team in a place away from heat sources (e.g., computer screen, direct solar radiation, etc.) and

sources of draft. Before deployment, CO2 was referenced to 400 ppm outdoor air to eliminate

a drift error. CO2 drift and gain errors during deployment were estimated by collocating the

IEQ monitors next to a recently calibrated instrument (Q-trak 7575; TSI Instruments, Shore-

view, MN) inside a chamber, following 10 step-wise increments from 400 to 3,000 ppm. Values

from the calibrated instrument were used as a reference to produce monitor-specific adjust-

ment curves to match the experimentally derived values. There are many variables available to

assess humidity [33], and as an attempt to utilize a mass-based representation of moisture in

the air, indoor values of absolute humidity were derived from the measurements of relative

humidity via the Ideal Gas Law. Hourly outdoor weather variables were obtained from the

local airport weather station, located approximately 5 miles away from the study site.

Students wore an actigraphy-based sleep tracker (Basis Peak watch; Intel, Santa Clara, CA)

on their nondominant wrist and were instructed to wear it at all times, especially during their

sleep time. Total sleep time (TST) was estimated as the difference between sleep waking time

and sleep onset time minus the interrupted sleep time quantified by the tracker. The tracker

used photoplethysmography to measure heart rate (HR) in beats per minute (bpm) at a 1-min-

ute resolution. The tracker has proven to be most accurate when collecting measurements at

rest [34,35]. To avoid measurement noise introduced by student movement, we only consid-

ered HR measurements during night sleeping periods.

Reduced cognitive function during a heat wave
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Statistical analysis

To investigate the effect of having AC during the HW on cognitive function, we conducted a

difference-in-differences (DiD) analysis, a method that emulates an experimental design by

comparing the effect between exposure groups assuming that any difference between them

would have remained constant had the intervention (AC) not taken place [36]. Considering

having AC during a HW as a natural intervention, we used generalized linear mixed-effect

models with each of the 5 cognitive performance metric z-scores as the outcome. First, we

used an interaction term between heat exposure groups (exposed, non-AC = 1; unexposed,

AC = 0) and an indicator variable signaling the start of the HW (baseline = 0; HW = 1) to esti-

mate the cognitive effects among the non-AC group after the start of the HW. A variant of this

model used an interaction for exposure group and the day difference to the beginning of the

HW (July 14) to study the temporal trend in cognitive function changes. The coefficient of the

interaction term is the resulting DiD estimate. We also accounted for 1-day lag maximum

daily outdoor temperature. Student ID was specified as the random intercept accounting for

the repeated measurements within subject.

Generalized additive mixed models were used to estimate the individual effects of indoor

environmental parameters on cognitive function. Student ID, nested within building type, was

treated as a random effect to account for differences between individuals. Environmental expo-

sures to maximum indoor temperature, mean noise, mean absolute humidity, and mean CO2

concentrations were computed for the overnight period prior to each cognitive test and

included into a single model for each cognitive function outcome of interest. In addition to

indoor environmental exposures, we adjusted for hydration (glasses per day less than the

median = 1; otherwise 0), caffeine intake (more than one caffeinated drink = 1; otherwise 0),

and time from waking up to taking the test (time in hours). Nonlinear effects of continuous var-

iables were evaluated by the use of penalized splines; only variables that exhibited a significant

nonlinear effect were kept in the model as spline terms. In the case of finding a nonlinear rela-

tionship between cognitive function and indoor temperature, effect estimates were calculated

by grouping the exposure variable (temperature) by quartiles. All model results show that resid-

uals were normally distributed and homoscedastic. Because nighttime thermal exposure was the

particular focus of the study, we wanted to understand the potential intermediate role of sleep

in the causal pathway between temperature and cognitive function. We formulated a mediation

model in which indoor temperature represented the exposure, TST represented the mediator,

and the 5 cognitive metrics were the outcomes of interest. We used the “mediation” package

from the R statistical software [37], which requires a 2-equation system of the outcome and

mediator model as input. The results include the average causal mediator effect, the direct effect,

and the total effect of the exposure. The same personal and behavioral covariates included in the

environmental model described above were included in the outcome and mediator models.

All statistical analyses were completed in RStudio (version 1.1.414). Mann-Whitney-Wilcoxon

tests were used to test building-level characteristics. We set a threshold for statistical significance

at p< 0.05 for the main analyses (2-tailed tests). We present the results for all the outcomes and

interpret the findings based on the consistency of the observed patterns, along with the magnitude

and precision of effect estimates, rather than solely relying on statistical significance.

Results

Descriptive analyses

Throughout the study, mean indoor temperatures in the non-AC group (mean = 26.3˚C;

SD = 2.5˚C; range = 19.6–30.4˚C) were significantly higher (p< 0.001) than in the AC group

Reduced cognitive function during a heat wave
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(mean = 21.4˚C; SD = 1.9˚C; range = 17.5–25.0˚C) (Fig 1). The mean relative humidity in the

non-AC group was significantly lower, at 61.4% (SD = 10.1%, range = 36%–88%), than in the

AC group, for which it was 73.3% (SD = 7.4%; range = 48%–91%) (p< 0.001). Conversely,

because air is dehumidified by the air-handling unit, absolute humidity was significantly

lower (p< 0.001) in the AC group (14.1 g water/m3 air) than in the non-AC group (16.0 g

water/m3 air). Mean CO2 levels were significantly lower in the non-AC group at 774.3 ppm

(SD = 337.6 ppm; range = 366–1,688 ppm) compared to 1,667.5 ppm (SD = 783.6 ppm;

range = 444–3,489 ppm) in the AC group (p< 0.001). Mean noise levels were significantly

higher (p< 0.001) in the non-AC group, at 55.6 dBa (SD = 9.0 dBa; range = 38.0–76.9 dBa),

compared to 46.2 dBa (SD = 7.1 dBa; range = 35.2–64.7 dBa) in the AC group. Indoor temper-

ature exposure quartiles are 21.7˚C, 23.5˚C, and 26.9˚C.

Fig 2 shows the average individual improvement on STROOP and ADD performance rela-

tive to the 5-day baseline period. Due to the learning effect, both groups experienced an

improvement during the course of the study. However, the AC group had significantly larger

improvements in the 5 cognitive metrics. No significant difference at baseline was found

between groups on ADD test metrics. Difference in STROOP inhibitory was also not signifi-

cant. The AC group had significantly slower STROOP reaction time and lower STROOP

throughput (S1 Table). Additionally, no significant difference in total number of daily steps

was found between building types or within building type between baseline and HW. While

absolute step count—as assessed by the physical activity tracker—was higher among non-AC

students, this group registered a decrease of 467 steps per day during the HW versus a moder-

ate increase (239 steps/day) registered by AC students (S2 Table). These estimations took into

account the daily wear time of the device by each student, to avoid errors introduced by differ-

ential wear times (mean daily wear time: non-AC = 1,249 min/day; AC = 1,220 min/day).

DiD results

To reduce the influence of a learning effect, cognitive test metrics were converted to z-scores

to compare day-to-day cognitive test results in the DiD models. Results from the DiD pre- and

post-HW models show significant deficits in both cognitive tests among the non-AC group

after the onset of the HW, relative to the AC group (Table 2). The largest effects were observed

in STROOP. STROOP throughput in the non-AC group had a mean difference in z-score

from baseline of −0.53 (p = 0.0001), equivalent to a reduction in 4.8 rpm or a 9.91% perfor-

mance decrement with respect to the AC group. In the non-AC group, STROOP reaction time

and STROOP inhibitory control increased by 155 ms (13.4%) and 22 ms (13.3%), respectively,

versus the AC group. ADD reaction time in the non-AC group had a mean z-score increase of

0.12 (p = 0.0001) with respect to the AC group, equivalent to 288 ms (11.4%). ADD throughput

also exhibited the same trend, though not significantly between the exposure groups during

the HW (mean difference in z-score = −0.19; p = 0.08), equivalent to 0.97 rpm—or a 6.3% per-

formance decrement less with respect to the AC group.

Changes in the magnitude and significance of DiD estimates in the day from start of the

HW model show different temporal trends by cognitive domain (Table 2). On one hand, the

deficits in the non-AC group in ADD reaction time and throughput increased progressively

along the HW period. The effects became significant towards the end of the HW, despite the

outdoor temperature reductions on days 5 and 7 of the HW period (Table 2). These effects

were likely driven by indoor temperature levels that prolonged the heat exposure beyond the

official HW period according to its definition based on outdoor weather parameters. On the

other hand, the largest and most significant effects in the STROOP reaction time, throughput,

and inhibitory control time were observed during the days following the highest daily Tout,max

Reduced cognitive function during a heat wave
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(i.e., HW days 1, 3, 4, and 6). In contrast to ADD performance, the effect in STROOP was

reduced in magnitude and insignificant for reaction time (mean difference in z-score = 0.22;

p = 0.08) and throughput (mean difference in z-score = −0.43; p = 0.08) at the end of the HW.

A similar trend was observed in measured HR during sleep periods, as categorized by the

sleep tracker. Fig 2C shows a significant increase in HR among the non-AC group during the

hottest days of the HW (mean difference: 2.39 bpm; 95% CI 2.28–2.56 bpm), but it receded in

the last 2 days of the study.

Effects of indoor environmental factors

Maximum indoor temperature during the sleep period prior to the daily cognitive testing was

significantly associated with the performance on the 5 cognitive function metrics studied here

(Table 3). For ADD reaction time, ADD throughput, and STROOP inhibitory control time,

performance decreased linearly with an increase in indoor temperature exposure. For the

mean difference in indoor temperatures between exposure groups during the HW (6.51˚C;

95% CI 6.48–6.53), the estimated mean difference in z-score is 0.06 (95% CI 0.02–0.12) for

ADD reaction time, −0.24 (95% CI −0.52 to −0.01) for ADD throughput, and 0.18 (95% CI

0.03–0.26) for STROOP inhibitory control time. The association between indoor temperature

exposure and STROOP reaction time and STROOP throughput was described by a U-shaped

(Fig 3A) and an inverse U-shaped relationship (Fig 3B), respectively. An optimum in STROOP

reaction time and STROOP throughput was found at approximately 22˚C; deviations from

this value in either direction resulted in a performance decline. In the range between 22˚C and

28˚C, the approximate linear effects of temperature on z-score are 0.04 per˚C and 0.05 per˚C

in STROOP reaction time and STROOP throughput, respectively. Additionally, Table 3 shows

the estimated effects of indoor temperature grouped by exposure quartiles.

Fig 1. Indoor temperature distribution by exposure group (boxplots); 1-day lag maximum daily outdoor

temperature (dotted line). AC, air conditioning.

https://doi.org/10.1371/journal.pmed.1002605.g001
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In addition to temperature, noise had an arousal effect on STROOP reaction time and

STROOP inhibitory control. A nonlinear association was found between CO2 levels and inhib-

itory control time. When dichotomizing the CO2 concentrations according to the median

value of the study (median CO2 = 1,250 ppm), a CO2 concentration above the median was

associated with slower STROOP inhibitory control time (mean difference in z-score = 0.13;

95% CI 0.01–0.25; p = 0.02) (Table 3).

Personal characteristics and behavioral factors showed significant effects on cognitive func-

tion (Table 3). Individuals with a liquid intake below the mean (<6 glasses per day) had signifi-

cant deficits in ADD. Conversely, drinking more than one caffeinated beverage per day had an

arousal effect on both ADD metrics and STROOP inhibitory control time. A significant effect

Fig 2. Individual improvement relative to baseline on STROOP and ADD performance (2a, 2b, and 2d–2f) and HR

response (2c); error bars indicate 95% CI. AC, air conditioning; ADD, a 2-digit visual addition/subtraction test; bpm,

beats per minute; HR, heart rate; HW, heat wave; RT, reaction time; STROOP, the Stroop color-word test.

https://doi.org/10.1371/journal.pmed.1002605.g002
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of the lapse duration between wake-up time to taking the test was found for only STROOP

inhibitory control time.

Mediation analysis

An increase in 1˚C in overnight indoor temperature exposure resulted in a 2.74-minute

decrease in TST (95% CI −2.77 to −2.71; p< 0.001). The mediation analysis revealed a signifi-

cant mediation effect of TST for ADD reaction time, representing 8.4% of the total effect (S3

Table). The direct effect of temperature was predominant on the 5 cognitive metrics. A nonsig-

nificant mediation effect of TST on STROOP shows that longer sleep times are associated with

shorter reaction time and increased throughput.

Discussion

We found that individuals in non-AC buildings experienced reductions in cognitive function,

as assessed by working memory and selective attention/processing speed, ranging from 4.1%

to 13.4% relative to baseline and with respect to the AC group. The analysis suggests that these

reductions might be attributable to an increase in thermal load and the combined influence of

other environmental (e.g., ventilation, acoustics) and behavioral (e.g., hydration, sleep) factors

that compound the effects of heat exposure in real-life settings. Increasing evidence from

experimental, epidemiological, and econometric studies has demonstrated the effects of

increased heat exposures on productivity [38], learning ability [39], and morbidity and

Table 2. Effects of HWs on cognitive performance in STROOP and ADD. DiD estimates of cognitive tests in non-AC group compared to AC group; mean difference

in z-score from baseline (95% CI).

ADD STROOP

Reaction time

(n = 44; obs = 3,766)

Throughput

(n = 44; obs = 404)

Reaction time

(n = 44; obs = 4,225)

Throughput

(n = 44; obs = 418)

Inhibitory control

(n = 44; obs = 4,225)

Tout,max (˚C)

1-day lag

Pre–post HW model

Intervention 0.12���

(0.05–0.18)

−0.19

(−0.44 to 0.05)

0.35���

(0.23–0.46)

−0.53���

(−0.78 to −0.27)

0.16�

(0.02–0.29)

Day from start of HW model

HW day 1 0.07

(−0.04 to 0.18)

−0.03

(−0.45 to 0.40)

0.43���

(0.62–0.25)

−0.56�

(−1.02 to −0.10)

0.30��

(0.09–0.51)

32.8

HW day 2 0.11

(−0.01 to 0.21)

−0.27

(−0.68 to 0.15)

0.27��

(0.09–0.45)

−0.39

(−0.85 to 0.04)

−0.03

(−0.17 to 0.23)

30

HW day 3 0.09

(−0.02 to 0.20)

−0.2

(−0.62 to 0.23)

0.46���

(0.28–0.64)

−0.69��

(−1.15 to −0.23)

0.35��

(0.07–0.47)

35.6

HW day 4 0.06

(−0.05 to 0.17)

−0.12

(−0.54 to 0.29)

0.49���

(0.25–0.72)

−0.69��

(−1.14 to −0.23)

0.27��

(0.10–0.61)

33.3

HW day 5 0.16��

(0.06,0.27)

−0.25

(−0.66 to 0.16)

0.40���

(0.22–0.58)

−0.45�

(−0.99 to −0.01)

0.04

(−0.16 to 0.24)

25

HW day 6 0.13�

(0.02–0.24)

−0.16

(−0.25 to 0.58)

0.37��

(0.13–0.60)

−0.46�

(−1.01 to −0.01)

0.06

(−0.20 to 0.32)

35

HW day 7 0.18��

(0.06–0.29)

−0.47�

(−0.92 to −0.01)

0.22

(−0.04 to 0.46)

−0.43

(−0.98 to 0.00)

0.23

(−0.04 to 0.49)

27.8

Significance levels at

�p< 0.05

��p< 0.01

���p< 0.001.

Abbreviations: AC, air conditioning; ADD, a 2-digit visual addition/subtraction test; DiD, difference-in-differences; HW, heat wave; obs, number of observations;

STROOP, the Stroop color-word test; Tout,max, daily maximum outdoor temperature.

https://doi.org/10.1371/journal.pmed.1002605.t002
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Table 3. Summary of fixed-effect estimates from the environmental exposure models, adjusting for personal characteristics, sleep, and behavioral factors. Cognitive

tasks fixed-effect estimates, mean difference in z-score (95% CI).

ADD STROOP

Reaction time Throughput Reaction time Throughput Inhibitory control time

Environmental factors

Indoor temperature

[˚C]

0.01�

(0.003–0.02)

−0.04�

(−0.08 to −0.002)

Q2 = −0.09

(−0.19 to 0.01)

Q2 = 0.17

(−0.05 to 0.39)

0.03�

(0.005–0.05)

Q3 = 0.02

(−0.15 to 0.10)

Q3 = −0.02

(−0.28 to 0.24)

Q4= 0.23��

(0.06–0.38)

Q4= −0.32�

(−0.64 to −0.01)

CO2

[ppb]

−0.006

(−0.04 to 0.02)

−0.06

(−0.17 to 0.06)

0.01

(−0.05 to 0.07)

−0.001

(−0.13 to 0.13)

CS��

(p = 0.01)

Noise

[dBa]

−0.002

(−0.001 to 0.006)

−0.01

(−0.02 to 0.003)

−0.01���

(−0.02 to −0.005)

0.01�

(0.001–0.03)

−0.006�

(−0.01 to −0.0001)

Absolute humidity

[g water/m3 air]

0.003

(−0.01 to 0.01)

0.001

(−0.04 to 0.03)

−0.0003

(−0.02 to 0.02)

−0.001

(−0.04 to 0.04)

−0.02

(−0.04 to 0.01)

Personal characteristics

Gender

[Women]

0.08

(−0.05 to 0.22)

−0.36

(−0.83 to 0.10)

−0.02

(−0.30 to 0.25)

0.02

(−0.47 to 0.51)

−0.05

(−0.21 to 0.10)

Age

[Years]

0.04�

(0.01 to 0.08)

−0.11

(−0.24 to 0.01)

0.13���

(0.05–0.20)

−0.17�

(−0.30 to −0.04)

0.01

(−0.04 to 0.05)

Born in US −0.02

(−0.17 to 0.13)

0.15

(−0.36 to 0.66)

0.02

(−0.28 to 0.32)

−0.12

(−0.65 to 0.41)

0.05

(−0.12 to 0.22)

Behavioral factors

Caffeine intake

[>1 drink]

−0.04�

(−0.08 to −0.001)

0.13

(−0.001 to 0.30)

−0.07

(−0.14 to 0.01)

0.13

(−0.04 to 0.30)

−0.11��

(−0.19 to −0.03)

Liquid intake

[<6 glasses per day]

0.14�

(0.01–0.27)

−0.46�

(−0.91 to −0.01)

0.12

(−0.14 to 0.38)

0.23

(−0.23 to 0.70)

0.08

(−0.07 to 0.23)

Time to test after awake

[Hours]

−0.004

(−0.01 to 0.004)

0.02

(−0.01 to 0.05)

−0.002

(−0.02 to 0.01)

−0.004

(−0.03 to 0.04)

0.05�

(0.003–0.10)

Significance levels at

�p< 0.05

��p< 0.01

���p< 0.001.

Abbreviations: ADD, a 2-digit visual addition/subtraction test; CS, cubic spline; ppb, parts per billion; STROOP, the Stroop color-word test.

https://doi.org/10.1371/journal.pmed.1002605.t003

Fig 3. CS relationships between maximum indoor temperature and (a) STROOP reaction time and (b) STROOP

throughput predicted from the fitted environmental exposure models in Table 3. CS, cubic spline; STROOP, the

Stroop color-word test.

https://doi.org/10.1371/journal.pmed.1002605.g003
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mortality in humans [17,18,40]. This research builds upon this body of evidence because it is

the first field study demonstrating the detrimental cognitive effects of a HW in a group of

young, healthy individuals. Research focusing on the mechanistic pathways in which body

temperature modulates neurobehavioral function in humans often relies on the experimental

inducement of passive hyperthermia via controlled environmental exposure to heat. These

efforts, however, fail at recreating the complex environmental and behavioral factors influenc-

ing cognitive function found in real settings. In contrast, we were able to comprehensively

characterize the environmental exposures and physiological reactions as well as behaviors of 2

groups drawn from the same population but with differential heat exposure during a naturally

occurring HW. Therefore, the environmental exposures are of unequivocal validity in terms of

magnitude, duration, and complexity.

Relationship between indoor temperature and cognitive function

Analysis of the individual effects of indoor environmental parameters indicate that higher

indoor temperatures during the sleep period resulted in significant cognitive function deficits

across the 5 cognitive metrics considered in this study. Our findings support previous reports

of relative throughput reductions in ADD (−11.7%; p = 0.01) and STROOP (−9.5%; p = 0.09)

at 30˚C compared to 22˚C [27]. Similarly, we found a 9.51% relative reduction in ADD

throughput and 7.48% reduction in STROOP throughput for an equivalent temperature expo-

sure (Δ8˚C). We found a U-shaped and inverted U-shaped relationship between indoor maxi-

mum temperature overnight and STROOP reaction time and throughput, respectively. Similar

nonlinear relationships between indoor temperature and cognitive test performance show an

optimum range for cognitive tests and office work productivity centered around 22˚C [27,41].

This temperature value is lower than the neutral thermal point (26 ± 0.5˚C) predicted by the

physiology-based heat exchange model proposed by Gagge and Nishi (2011) for a young popu-

lation in a light summer clothing envelope, as well as the adaptive thermal comfort model [42].

By comparison, STROOP inhibitory control reaction time, as well as ADD reaction time

and throughput, exhibited a linear relationship with indoor temperature exposures, suggesting

that arousal temperature for inhibitory control and working memory might have some lower

optima than working speed in STROOP. It has been previously proposed that differential

effects to the various cognitive domains might result from zone-specific thermal sensitivities in

the brain [43]. Sun and colleagues (2013), for example, found an increase in inhibitory control

response time among subjects passively induced to hyperthermia; they attributed this effect to

significant changes in the functional connectivity of brain areas responsible for high-order

executive function and somatosensory signal transmission of skin temperature stimuli

(decreased connectivity of the medial orbitofrontal cortex and temporal and parietal lobes)

and thermoregulation (increased connectivity of hypothalamic areas) [26]. Others have found

a performance impairment in ADD at different increments of core temperature induced by

controlled heat exposure [44]. Analog to their findings, we also observed a progressive perfor-

mance deficit associated with heat exposure, despite the suggestive evidence that subjects had

reached some level of physiological adaptation by the end of the study. In our case, the non-

AC group showed a significant increase in HR during sleep for the first days of the HW, fol-

lowed by a reduction to pre-intervention HR levels during the last 2 days of the study, although

indoor temperatures during those days remained virtually unchanged (Fig 2C). In ADD, we

found a linear relationship between indoor temperature and cognitive function deficits. Cog-

nitive deficits due to cold have been found at lower temperatures than those we observed

[20,44], which might explain why our findings did not show an inflection point in ADD

performance.
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Relationship between other environmental exposures and cognitive

function

Differences in environmental exposures among the AC and non-AC groups extended beyond

temperature. Low ventilation rates in the AC group led to significantly higher CO2 concentra-

tions during sleep periods (p< 0.001). Low ventilation rates and CO2 concentrations normally

found in office buildings (approximately 1,000 ppm) have been recently associated with

impairment in multiple domains of high-order cognitive function [45,46]. We found that CO2

concentrations beyond the median (1,250 ppm) were associated with longer inhibitory reac-

tion times (z-score = 0.13 ± 0.06; p = 0.02). The predominant role of the temperature exposure

might explain why no other cognitive test metrics were significantly associated with CO2 con-

centrations [27], as found by Lan and colleagues (2017). Significantly higher noise levels in the

exposed group were likely due to the continuous use of fans and open windows as a heat-miti-

gation strategy during the HW. A significant improvement in reaction time and throughput in

STROOP was associated with higher decibel levels, which is consistent with previous findings

of antagonistic effects of noise and temperature exposures [47,48]. An early explanation of this

phenomenon was proposed by Houston (1969) [49] based on the effect of noise inhibiting the

interference of other types of stimuli (e.g., temperature, incongruent color-word), thus facili-

tating the performance of the evaluated task.

Relationship between behavioral factors and cognitive function

In the current study, we used self-reported liquid intake as an indirect measure of hydration

level. Despite the limitations of this indicator, we found that an intake below the median in the

study (i.e., 6 glasses of liquid per day) was associated with cognitive function deficits in all eval-

uated metrics. Using more precise markers of dehydration, others have found that cognitive

function impairment is associated with hypovolemia, further compounded by heat stress and

physical activity [23,50]. STROOP inhibitory control was sensitive to the lapse between wake-

up and test time, with poorer performance associated with longer lapse times. In 2015, Burke

and colleagues [51] reported impaired performance right after wake-up, gradually improving

in the following 2- to 4-hour period as sleep inertia dissipates. Because the mean lapse time in

our study was 0.9 hours (SD = 0.81), the effects of sleep inertia might have still impacted this

cognitive outcome.

Results from the mediation analysis suggest that sleep might be an intermediate variable in

the causal mechanism between indoor temperature exposures and cognitive function, which

were significant for ADD throughput. Our small sample size and limited reliability of the acti-

graphy-based TST values preclude this analysis from yielding conclusive results about the

mediating role of sleep in cognitive effects.

Implications for existing adaptation strategies to extreme heat in buildings

Our findings have relevant implications for building design, redesign, and adaptation strate-

gies to a changing climate. The results from the DiD models suggest that the HW had a causal

detrimental effect on 5 cognitive function measures in the exposed group (non-AC) with

respect to the control group (AC) during the baseline period. The relative magnitude of these

effects is substantial as well. The relative reduction of 13.9% (z-score = −0.47) in ADD

throughput on the last day of the HW is comparable to the 15.8% relative reduction in the

throughput on a serial ADD associated with 24 hours of sleep deprivation [52]. A closer look

at the temporal trend of the effects, particularly in ADD, shows a progressively increasing dif-

ference in cognitive function between the 2 groups; in fact, the effect estimates are largest after
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outdoor temperature values have subsided. However, the large thermal inertia characteristic of

buildings in heating-dominated climates prolonged high indoor heat exposures beyond the

official duration of the HW (Fig 1). Because AC systems are often an addendum to existing

construction, the building structural properties are similar to their non-AC counterparts, and

therefore their protective effect is contingent upon electricity availability. The implications

associated with the limited passive habitability of the current built environment have been

reported before [53,54]. Our results stress the need to account for the building thermal proper-

ties that modify indoor heat exposure. Current building simulation tools might be used to

model the thermal retention potential of building structures to compute a high–spatial-resolu-

tion indoor-heat index prediction. Such tools could be implemented at the city level as part of

extreme heat adaptation plans.

These results provide evidence to mitigate heat exposures among populations normally

considered resilient to them, especially in settings in which cognitive processes are critical to

ensure learning, safety, or productivity. The increased adoption of current mechanical cooling

systems, however, entails several unresolved challenges. First, their use represents a positive

feedback to climate change due to the increased greenhouse gas emissions associated with

higher energy demand and unintended refrigerant leaks, even in locations where renewables

constitute a larger portion of the electricity generation mix [55–57]. Second, their deficient

design and operation, often leading to overcooled and underventilated spaces, have detrimen-

tal effects on cognitive function and increase the exposure risk to indoor pollutant sources

[58]. Finally, long-term exposures to thermally controlled environments might have a mal-

adaptive effect on physiological acclimatization, potentially increasing the biological suscepti-

bility to heat stress [59]. Novel building materials [60] might represent alternative solutions for

the uncompromised management of more demanding extreme thermal regimes expected in

the future.

The students’ limited age range represents a limitation in our study. Nevertheless, the con-

sistent findings in this young, healthy population might indicate that greater portions of the

population are equally or more susceptible to these effects. Another limitation is that the study

was performed in a heating-dominated climate, which could compromise the generalizability

of the results. Further research in other latitudes and settings should address the question of

susceptibility and acclimatization to heat stress. Because the daily cognitive assessments took

place right after waking, our study examines acute affects that may be transitory in this or

other populations. Lacking information on location and concurrent environmental exposures

during the day, we could not determine whether the observed effects extend during the rest of

the day. However, we consider that cognitive function demands during the earliest time win-

dow involve critical tasks, such as commuting, that have been found to be impacted by HWs

[61]. Further research could examine the prolonged effects of this association during the day.

Air pollution may increase during HWs, resulting in different indoor concentrations if AC

usage or window use patterns differ between buildings. While negative effects of air pollution

on cognitive function are mostly attributed to neurodevelopmental changes [62], recent evi-

dence also suggests an acute effect of criteria pollutants such as nitrogen dioxide and elemental

carbon on attention processes [63].

Health effects of heat stress due to climate change, manifested as cognitive function deficits,

extend to larger sectors of the population and can have significant implications on educational

attainment, economic productivity, and workplace safety. Indoor temperature exposures in

the non-AC buildings prolonged the official HW period. Given the importance of indoor heat

exposures, we deem it necessary to consider building thermal properties in indoor heat indices

when forecasting HWs for the proper assessment of heat exposure risks. Moreover, existing

methods to mitigate indoor heat exposures only provide a short-term solution by means of
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localized thermal comfort at the expense of a potential increase in greenhouse gas emissions

and higher exposures to indoor contaminants. A sustainable management of indoor heat loads

will require the use of novel building design and materials, as well as scalable technological

advancements in building ventilation and cooling systems.
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