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Abstract 

 

This paper presents a new attempt to explore people’s cooperative behavior under the 

natural uncertainty in decision making process. The most recent development of quantum 

cognition creatively enriched the exploration to the endogenous uncertainty in human 

behavior by expanding the strategic space. In this paper we extend the quantum decision-

making model to a two-player Prisoner’s dilemma game by bringing in the evolutional 

decision operators with quantum phases. These quantum phases, following uniform 

random distribution when the decisions are confined to individual decision-making 

process, will change according to the different levels of implied cooperative inclination, 

and lead to possible new Nash Equilibriums that emerge from a “hyper” decision space. 
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We also bring in the Dissimilarity Index from complex network literature, to capture and 

measure the cooperative inclination between the players. Conditions of Quantum Nash 

Equilibrium are derived out from dynamic quantum equations under the Heisenberg 

Picture.    
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1. Introduction 

 

Cooperation and competition is one of the oldest pairs of paradoxes in market oriented 

economy. The origin and evolution of cooperation now becomes a cross-discipline 

research interest. With the ambition providing broader psychological foundation to 

decision making process, some  updated findings in human cognition study, (Aerts,1995, 

2009a, 2009b, 2011;  Busemeyer, 2006a, 2006b, 2007,2011; Khrennikov, 2003, 2009, 

2010; Pothos and Busemeyer, 2009; and Franco2009; etc.;) presented a novel framework 

with quantum strategies.  

 

“Sure Thing Principle ” (Savage 1954) predicts that given two independent observations, 

“One chooses action A over action B when she knows event E happens ”and “She still 

choose A when she knows E does not happen”, it can be logically derived out that the 

decision maker will stick to  A regardless of knowing E happens or not. However, one of 

the famous violations to sure thing principles, “disjunction effect”, (Tversky and 

Shafir,1992; Shafir and Tversky,1992) broke this prediction in experiment. Shafir and 



 
 

Tversky conducted an experiment in which participants were asked to play a gamble of 

“50% chance to win 200 dollars or lose 100 dollars”. The catch of the game is that the 

participants were told before start that they would have an opportunity to play the same 

gamble twice. The first round was obligatory, but they were allowed to decide whether 

play the second round. Research conductors studied the player’s decisions on the second 

round game after their first ones played under three conditions: won, lost and not known 

the result. A majority of players chose to gamble the second round knowing that they 

won the first game (69%), so they did if knowing they lost the first game (59%); but they 

switched to choosing not to gamble the second round when they did not know the 

outcome of the first round (36%).  

 

Another famous case for disjunction e�ect is Prisoners Dilemma Game (Fox and 

Tversky, 1995; Croson, 1999), experiment shows the ratio that players “irrationally” 

deviate from the optimal strategy (Defect) to the inferior strategy (Cooperation) will 

significantly rise, when the player does not know the move of the others for sure.  

The recent development in quantum strategy theory provoked a more daring solution by 

taking the violation to sure thing principle as a special type of “decision interference”, 

inspired by the well-known double-slit experiment of electron in quantum physics. In the 

above example, decisional strategies “Taking action A when (knowing) Event E happens ” 

and “Taking action A (Knowing) Event E does not happen” are two vectors 1A  and 

2A in Hilbert space. Therefore the vector sum 21 AA + represents “Taking action A 

regardless knowing event E happens or not happen”. 1A and  2A are complex numbers 



 
 

so we get  

21
2211 , AA ii eAAeAA θθ

== (1) 

The probability of taking action A is the square of the modulus. 
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1
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21 AAAAAAAA ϕϕ −++=+  (2) 

It is obviously that the probability of taking action A depends on the difference of phase 

angles φA.  

 

12 AAA ϕϕϕ −=  (3) 

P(A) can be smaller than the sum of absolute values of 1A  and 2A    when φA 

takes some certain value. So the probability of taking action A not knowing exactly if E 

happens can be smaller than the simple addition of the probabilities of taking two 

independent strategies, which explains the violation to Sure Thing Principle. 

 

Respectively, Aerts(2009a), Busemeyer(2006a), Khrennikov(2009), Franco(2009) are 

able to explain disjunction e�ect; Aerts(2009b), Khrennikov(2009) explains Allais 

paradox(Allais, 1953); Aerts(2011) explains Ellsberg paradox(Ellsberg,1961; 

Halevy,2007).  

Quantum strategy is not imaginary fantasy made up by math trick. It is the reflection of 

the fact that human decision-making process is inherently uncertain and probabilistic. 

Vectors in Hilbert space are used to capture the intrinsic uncertainty, specifically, by 



 
 

identifying a proper quantum state vector for a particular decisional strategy. 

Busemeyer(2006a, 2006b, 2007),Pothos and Busemeyer(2009) compare quantum 

strategy method with Markov stochastic decision model (Regenwetter Falmagne and 

Grofman (1999); Ratcli� and Smith(2004)). They found in the stochastic behavior 

models, psychological state of decision evolutes along only “single path” in all time, 

given the “one state” and “single path” is stochastic. However, for quantum strategy 

approach, psychological state of decision is captured by superposed state, while the 

evolution can pass along multiple paths simultaneously due to the fundamental 

characteristic of quantum. (Busemeyer (2006a)) So quantum strategy approach provides a 

superior and comparative vision for decision-making process despite the odd looks of 

mathematical form.  

So far we briefly reviewed recent works in quantum strategy approach. It should be 

noticed that all these cited works are conditional on independent individual decision-

making. The purpose of this paper is to generalize the quantum strategy approach and 

extend it to multiple players game. 

2. Quantum Strategy and Strategic Operators  

 In the discussion in section 1, an individual quantum strategy takes form of   

 

CyDx +       (4) 
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when x and y are complex coefficients. 

                                                         

           

                                                     

 

 

 

 

                             

                                                          

Table 1: Prisoner’s Dilemma 

 

We extend it to a two-players prisoner’s dilemma game as in Table 1, which is, actually, 

a correlated strategic decision process of two persons. Table 1 is a generalized form of 

two players Prisoners Dilemma game. (payoffs will satisfy  pstr 22 >+> ).We 

compose strategic operators (orthonormal vectors) to define strategy C (cooperate) and D 

(Defect) in Hilbert space as (6) and (7). 
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                             Player k 

 

 

Player j 

 C D 

C (r,r) (s,t) 

D (t,s) (p,p) 



 
 

Any mixed strategy in classical world could be written as a pair of ordinal real numbers 

shown in (8). 

                      10),1,( ≤≤− ppp                   （8） 

p  and p−1 are the probabilities of performing  pure strategy C and D. For a quantum 

strategy， p is a complex number contains phase angles which extend (p, 1-p) to  

 

                   πϕπθθθ ≤≤≤≤ 0,2/0),sin,(cos 22      （9）           

                  

For simplification we study the square roots of (9).  

 

            πϕπθθθ ϕ ≤≤≤≤− 0,2/0),sin,(cos ie          （10） 

 

The real probability responds to the square of modulus, which is also used by 

Busemeyer, 2006a, 2007; Khrennikov 2009; Pothos, Busemeyer, & Franco 2009. 

 

Now we compose the complete form of strategic operator:  
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Through this work we stick to the Heisenberg Picture in quantum dynamics, so the state 

vectors are fixed, not vary with time (while operators do). So it is convenient for us to 



 
 

lock the initial state vector as (6), and focus on developments of (11).    

 

Property 2.1: Matrix in (11) is a unitary matrix (all elements are complex numbers; the 

modus of determinants equals 1).1  

 

Property 2.2: (Any individual player’s) quantum strategy is defined with parameter θ and 

φ.  

Property 2.3: If ϕ = 0, quantum strategy degenerates to mixture strategy under classical 

condition.  

Property 2.4: Operator matrix (11) is simultaneously a Hermite Matrix, whose 

eigenvalues are real numbers. This is a primary requirement of quantum computation 

operators.  

 

 As particular cases, pure strategy C (cooperate) is able to be expressed as:  
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While D (defect) 
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When the quantum strategy is extended to two players’ game, it is actually a correlated 

                                                
1 In our model, any quantum strategy should be expressed as a unitary matrix, to ensure the total probability 
as 1. 



 
 

interactive decision-making process. The total strategic space of the two players 

possesses four orthogonal base vectors: |DD⟩, |CD⟩, |DC⟩|CC⟩. To be consistent with 

previous discussions, we let |DD⟩ as column vector (14):  

 

              |DD⟩ =
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              (14)  

Transformation in (14) also applies to three other base vectors. Quantum strategy can be 

rewritten as the product of the base vector premutiplied with a 4 × 4 unitary matrix.  

Each player has her own strategic operator ),( jjjS ϕθ
∧

和 ),( kkkS ϕθ
∧

 given every strategic 

operator is a 2 × 2 unitary Hermite matrix working on a specific Hilbert strategic space of 

her own. The joint effect becomes the tensor product of the two individual strategic 

operators:  

                    kj SSS
∧∧∧

⊗=       (15)  

Under Heisenberg  Picture (Dirac, 1931),  (14) is fixed as initial state vector being 

constant to time variation. So it is not hard to verify, that if we premultiply (15) to (14), 

and let ϕj = 0,ϕk = 0, modulus squares of the four components of the vector will 

respectively be:  

 

kj θθ 22 coscos , kj θθ 22 sincos  , kj θθ 22 cossin  , kj θθ 22 sinsin  

 



 
 

Suppose we let qp kj == θθ 22 cos,cos , the quantum strategic operator would degen-

erate to the probability distribution of mixture strategy in classic status: p q, p(1 − q), (1 − 

p)q, (1 − p)(1 − q).  Otherwise, ϕ1, ϕ2 nonzero, strategic phase angle difference will exist, 

which means the quantum strategy should hold.  

The angle phase difference between two players will capture how correlative factors, 

like cooperation inclination, work on players’ strategy selection, and ultimately the 

equilibrium of the game. Take ϕ1, ϕ2 as non-independent or interacted factors, in the 

players total strategic space, phase di�erence is interference of two players’ quantum 

strategic wave functions. One consequence of interference is that strategic operator will 

evolve.  

Equation (16)  gives out the form how evolution operator 
∧

U   takes effect on the total 

strategic operator 
∧

S  , shown as
  

                                  ∧∧+∧∧

= USUS evo
   
(16)  

+∧

U is a conjugate transposed matrix to
∧

U  .(Under  Schrodinger Picture, it is equivalent 

to two players’ total wave function being  affected by interaction potential).The time 

evolution operator is a Hermite Matrix, in which the elements will carry implications 

related to the  correlation and cooperative inclination variables.  

 

 

3  Cooperative Inclination and Dissimilarity Index  



 
 

 

Sally (2002) discussed the existence of compassion and sympathy between players by 

introducing an endogenous function. In a Prisoners Dilemma game in table 1, to capture 

the general motional connections between the players in a Hilbert strategy space, we 

compose a function of “cooperative inclination” .  

A main challenge is how the players’ cooperative inclination twisted by physical and 

psychological distance. We employ the approach of Dissimilarity Index (Zhou, 2003a, 

2003b) from Complex Network literature (Jackson, 2008; Goyal,2007). Another reason 

for borrowing dissimilarity index, is that it allow the distance between two nodes to be 

asymmetric.  
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1
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−=         (17) 

In equation (17),  kj λ   measures for the cooperative will player j   holds for player k . 

The cooperative degrees are jointly determined by the physical distance and 

psychological distance they feel for each other. jkϕ and jkψ   physical and psychological 

distance between player j and player k respectively, δ represents the maximal distance 

between two players, ω is the weight attached to each type of distances .  

 

Granted  ]1,0[∈kj λ , 0 for no cooperative inclination, while 1 for the largest  inclination, 

equation (17) shows that the smaller of both the two distances, the stronger the  



 
 

cooperation inclination.  

 

For any particular game, real effect of cooperation is defined by the cooperative 

inclination held and perceived reciprocally. Cooperative function ),( jkkj λλΛ  char-

acterizes this understanding, with the fundamental properties of:   

 

Property 3.1:                1),( ≤Λ jkkj λλ  (18)  

Property 3, 2A:            0
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i.e, To increase (decrease) any player’s cooperation degree will increase (decrease) the 

value of cooperation function.  

Property 3.2B:      ),max(),( jkkjjkkj λλλλ ≤Λ  (21)  

Property 3.2C:     λλλ =Λ ),(  (22)  

Property 3.3:      0),0( =Λ jk λ  (23)  

i.e, if any player’s cooperation degree is 0, the value of cooperation function will be non-

positive number (for simplicity, we let it be 0 ).  

Property 3.4: ),( jkkj λλΛ  is continuous for all kj λ  and jk λ .  



 
 

 A fuction form satisfying 3.1-3.4 is   the geometric mean of kj λ  and jk λ .,  

                    ))((),( jkkjjkkj λλλλ =Λ    (24) 

(For reading convenience, we simplify ),( jkkj λλΛ  with ),( kjΛ  in after discussions.) 

 

Figure 1: The structure of network communities  

 

Dissimilarity index is rooted from the concept of Euclidean distance under social network 

study context. It is a good measure of the “distance” between two nodes caused by the 

different affiliation relationship. (Wasserman and Faust,1994). The complete network is 

made of various groups and clusters with denser conjunctions within the internal vertex, 

which share closer value and recognized standards, more likely to react consistently to 

certain stimulations from externality. Comparatively, the bindings between those groups 

or clusters are sparse. Figure 1 shows the structure of connecting framework within and 

between groups. 

 



 
 

 (25) defines the Euclidean distance between two nodes k and j in a complex network. In 

an adjacency matrix A, jkA  values 1 if j and k share at least one edge connection, 

otherwise, 0. Column (line) j in the adjacency matrix shows the connectivity between j 

with all the others:  

 

∑
≠

−=
kjl

kjjljk AAx
,

2)(  (25)  

jkx  in (25) is a measurement of similarity, or the degree that two vertices in the whole 

network  are equivalent in structural function.  

 

Another widely used measure is Pearson Correlation, displays the statistical correlativity 

between two columns in the adjacent matrix.  
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Zhou (2003a, 2003b) improved dissimilarity index by applying random walk method to 

rebuild the intra-nodes distance. Now “Distance” between j and k is defined as the 

number of random walk steps which are needed for a Brownian particle to move from j to 

k. Assume a Brownian particle jumps to an adjacent node position, the probability it 

reaches a given adjacent k is:  
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After jumping a large number of steps ( n〉〉 ), the probability for this particle to reach  k is:  
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From (27) and (28), the final number of steps can be solved out through a series of linear 

algebra calculation:  
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I  is NN ×  unit matrix, )(kB  is matrix transformed from P in (27) replacing column k 

with column vector 0. Solving linear algebra TT
kNk ddkBI }1,...,1{},...,)]{([ ,,1 =− , all kjd ,  

can be worked out. Then we are able to compose Dissimilar  Index kj ℑ :  
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 (30) is the variance between two number groups kjd ,  and ljd , .Consequently, given 

dissimilarity index kj ℑ  smaller ,  the overall picture of the network  from the view of 

nodes k and j are more similar. Dissimilarity index takes value in the close interval [0, 1].  

 

Then we let  

                   kjkj ℑ−= 1λ          (31)  

Now obtain the expression format of cooperative inclination ),( kjΛ   in the precious 

discussion.  

4  Two Players Model with Cooperation Inclination  

As discussed in section 3, ),( kjΛ  is the function of intended cooperative inclination, 

then elements of the evolution matrix 
∧

U  can be written as function of ),( kjΛ  i.e, 

),( kjevo SS Λ

∧∧

= , given 
∧

U  satisfying the conditions of:  



 
 

 

Property 4.1. :  Unitness  

∧

U  degenerates into unitary matrix if ),( kjΛ = 0 . 

Property 4. 2. : Smoothness  

All elements of U
ˆ
are continuous differentiable function of  ),( kjΛ = 0 . 

Corollary:  

If  ),( kjΛ = 0 is a infinitesimal , taking the form of :  

22
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Proof:  
∧

U  is able to follow Taylor Expansion under matrix form because of smoothness. 

Take the two items from the expanded expression to obtain (32).  

 

Property  4.3. : Completeness   

Total effect of two time evolution processes with 1

∧

U  and  2

∧

U on strategic matrix S
ˆ
can be 



 
 

reform into one time evolution process 3

∧

U  :  

Corollary: 0)( =XTr , which means matrix X is traceless. 

Proof: Assume ),( kjΛ  is an infinitesimal, we have:  

            ∞=
Λ

≡Λ N
N
kjkj lim,),(),(δ   (35) 

Repeat the evolution operation 
∧

U  for n times, from the completeness condition we can 

have:  
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N
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Take the determinant
∧

U , because 1det =
∧

U , easy to find that 0)( =XTr .  

Property 4.4. :  Classicality Perseverance  

The four classical strategies CCCDDCDD ,,,  are inclusive in ),( kjevo SS Λ

∧∧

=  
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  (38)  is verified to be the only satisfying  matrix  
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5.   Calculation of Expected Payoff Value and Deduction of Nash  

       Equilibrium 

 

Premultiply total strategic operators evotol SS ˆˆ =  on initial state vector  DD  :  

                   DDUf
ˆ=φ     (39) 

            fφ  has four components： 
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Each component is one projection of fφ  on each of the 4 orthogonal basic vectors. The 

square of complex modulus of each vector component composes the expected coeffcient 

of corresponding payoff value:  



 
 

                CDDCDDCCA sPtPpPrP +++=$    (41) 

                        2
CCCCP φ=  ,  etc.  

 

It should be emphasize here that only the squares of complex modulus of 4 components 

in fφ  correspond to probability in reality. So the quantum strategy tolŜ  and the initial 

state vectors are technically only the hyper-intermediate processes that do not directly 

apply to the players’ move in reality.  

 

To give a calculation example, for the Prisoners Dilemma game in table 1, given 

1),( =Λ kj , The quantum expected payoff  value of player j (Alice) now is:  

2
)2/cos()2/cos()cos(),,,( kjkjkkjjj rP θθφφφθφθ +=       （42） 

2
)2/sin()2/cos()cos()2/sin()2/cos()sin( jkkkjjp θθφθθφ −+  

2
)2/sin()2/cos()cos()2/sin()2/cos()sin( jkjkjkt θθφθθφ −+  

2
)2/sin()2/sin()2/sin()2/cos()sin( kjkjkjs θθθθφφ +++  

 

Now we look into the Nash equilibrium on expected quantum pay off values. Define 

quantum Q strategy  as  (43) (Eisert, Wilkens, and Lewenstein (1999)):  
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If one player chooses strategy D, for the other player, choosing strategy Q will offer 

higher payoff value than D. Naturally, suppose two players start with strategy set  

(U1(θ1,ϕ1), U2(θ2,ϕ2)), player 1 will change  strategy from U1 to Q for improving gains 

unless U1 = Q .The same is for player2. On the contrary, suppose two players start with 

strategies ),( QQ , no one will deviate from strategy Q alone. So ),( QQ  is a Nash 

equilibrium. But strategy Q is NOT performable like a classic strategy. It is pure quantum 

strategy. Substitute )ˆˆ( BA QQ ⊗  into (42), easy to verify only the coeffcient before r is 

nonzero, which means the projection of (Q, Q) on coordinate unit vectors is (C, C).  

 

To simplify the calculation, we define:  

 

),(arcsin jiΛ=γ        (44)   

Then the quantum expected payoff of player j (Alice) is:  

2))2/cos()2/cos()(cos(),,,( kjkjkkjjj rP θθφφφθφθ +=               

222 ))(sin())(cos())2/)(cos(2/cos( kjkj φφγθθ ++  

)2/sin()2/cos()2/cos()2/sin()sin(2 γγθθφ kjjp+  

2))2/)(cos(2/cos()cos( kjj θθφ+  

))2/sin()2/cos()(sin( 2
kjj θθφ  

)2/sin()2/cos()2/sin()2/cos()sin(2( γγθθφ kjjt  

2))2/cos()cos( kk θφ−  



 
 

2)cos()2/cos()2/sin()sin( γθθφ kjk+  

)2/sin()2/cos()2/cos()2/cos()sin(2 γγθθφφ kjkjs ++  

2))2/sin()2/sin(( kj θθ+            (45) 

 

The quantum expected payoff value of player k (Bob) is calculated in same method. In 

general, there exists a certain critical value for ),( kjΛ  to make ),( QQ  a new quantum 

Nash equilibrium. The observable outcome in reality is the player’s shift from strategy (D, 

D) to (C, C).  

For example, let r=3, t=5, s=0,p=2 (Table 1)  

γφθθφθ 2222 sinsin)2/(cos5)2/(sin)ˆ),,(ˆ($ +=DUA          (46)  

however,  

 γφθθθφθ 22 sin)2cos)2/(coscos23(cos4)ˆ),,(ˆ($ −+−+−=QUA      (47) 

 

Solve out the critical value: 685.05/2arcsin ≈=thγ , which is corresponding to 

cooperation inclination function value 4.0),( =Λ kj  Emergence of the new Nash 

Equilibrium is a consequence of quantum conditions, specificly, conditional on phase 

factorϕ . If 0=ϕ ,  there will be no new Nash equilibrium. 

 

6.  Summary and conclusions  



 
 

In this work we studied how cooperation is possible with the intrinsic uncertainty of 

human behavior, especially in competitions and confrontation like Prisoners dilemma 

type. The conditions for cooperation are more complex in a quantum game because they 

depend on both the potential intra- connections and the existence of a high dimensional 

strategic space. If people actually had been making decisions in a bigger space th-an the 

one we use to take for granted, quantum strategies then would emerge from the shadow 

of irrationality. Quantum Nash Equilibrium is possible, even though the actions taken in 

“real world” are only their projections in a lower dimensional world.  

 
Behavioral economics provides an open framework to retain, test and incorporate 

elements and factors like emotion, religions ideology, culture and psychological e�ects. 

If we realize the similar “actions” observed could embraced how di�erent motivations 

and resolutions, if we can accept the endogenous complexity in mind and behavior 

patterns, it might be more comfortable to accept the sustainable “irrationalities”. They 

could be no more than the overlapped shadows of “rationalities” from simply bigger 

decision space.  
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