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Abstract

An informed Sender can communicate news to a Receiver, who then

decides on her action. The Sender can send a di�erent signal for every

realisation of news. I show that the Sender's optimal strategy is simple -

all signals are degenerate, news that are not revealed precisely are pooled

into only one set, and this set will normally consist of only a small number

of disjoint intervals. Greater transparency is optimal when the Receiver

is more likely to be predisposed against the Sender. These results shed

some light on phenomena such as political censorship, restrictions on hate

speech, central bank transparency, and disclosure of information by �rms.
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1 Introduction

There are many contexts in which an informed agent chooses how to reveal
information to a decision-maker. For example, governments can often choose
how much information to disclose to citizens in order to maximise public sup-
port. Central banks can decide how much transparency they want to permit -
for instance, whether to make their internal forecasts public. Firms select the
amount of information they reveal about their product quality, �nancial status,
and environmental performance. How does the optimal communication policy
look?

To answer this question, this paper proposes a model centred on a game
between a Sender (e.g. a government) and a Receiver (e.g. a voter). The Sender
chooses how to communicate news to the Receiver. He does it by mapping each
realisation of the news to a probability distribution over a set of messages - in
e�ect, selecting a signal for any realisation of news. In turn, the Reciever, upon

∗I am grateful to V. Bhaskar for guidance and helpful advice. I also thank Nageeb Ali,
Roland Bénabou, Alessandro Ispano, Philippe Jehiel, Emir Kamenica, Christian Krestel,
Stephen Morris, John Quah, Francesco Squintani, Felix Várdy, Jörgen Weibull, Andriy Za-
pechelnyuk, and audiences in Barcelona, Brussels, London, Madrid, and Riga, for valuable
comments.
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seeing a message, forms a posterior belief about the news. She can then choose
an action - a real number. The Sender would like that number to be high. The
Receiver, on the other hand, wants to select a higher action (e.g. to vote for
the government) only when the news are good enough - namely, when the value
of the news is above the Receiver's preference parameter, which is her private
information. The distribution of these preference parameters corresponds, for
example, to a distribution of attitudes towards the government. The Sender
thus wants to select a news management policy that, in expectation, maximises
the probability that the Receiver's posterior belief about the news is above her
preference parameter. In general, the Sender has a very large set of strategies at
his disposal - he can pool news together into many di�erent sets, these sets can
consist of many disjoint intervals, and he can complicate the strategy further
by mapping each of these sets set to a probability distribution over a large set
of messages.

The key contribution of this paper is to show that the equilibrium news
management policy is simple. First, there will always exist an optimal strategy
under which the Sender will only send degenerate signals (i.e. signals that
produce a single message with probability one). The Sender will never want to
randomise. Thus, Sender's strategy can be reduced to a partition of the set of
news, with every element of the partition containing news for which the same
message is sent.

Second, it will be shown that the optimal partition will contain at most one
non-singleton element. In other words, the Sender will pool some news together
into one set, while disclosing the other news precisely. This corresponds to
a strategy of censorship - the Receiver will be allowed to learn some of the
news exactly, while the rest will be hidden. The strategy of disclosing news
approximately - pooling them into a number of sets, so that the Receiver could
learn that the news belong to one of them - will not be pursued, although it is
potentially available.

Third, the optimal censorship policy will be simple as well. In principle it
is still possible for the Sender to make the set of censored news complicated.
For example, he can pool together very bad news and very good news, while
disclosing �average� news. In reality, this is rarely observed, and indeed this
paper will show that such a policy can rarely be optimal. More speci�cally,
it will be shown that the set of censored news cannot consist of many disjoint
intervals, unless the distribution of the Receiver's preferences has a complicated
shape.

The actual news management policy will largely depend, at an equilibrium,
on the shape of the Receiver's preferences. Both full revelation and complete
hiding of information emerge as special cases under certain distributions of the
Receiver's preference parameter. In general, it will be shown that it is optimal
to reveal more information if the Receiver is predisposed against the Sender. On
the positive side, this suggests that regimes that are more popular1 are likely
to restrict freedom of the press to a greater extent. Similarly, �rms facing more

1For reasons unrelated to the news being disclosed.

2



skeptical consumers will reveal more information about their product quality.
On the normative side, measures such as restrictions on racist hate speech are
useful only when the public is largely anti-racist to start with. Similarly, central
banks are better o� with more openness when facing skeptical market players.
More generally, the paper suggests that the optimal amount of transparency
varies depending on the audience's preferences. This helps explain why, for
example governments can both gain and lose from censoring bad news2, central
banks di�er in their level of transparency3, commercial banks tend to reveal
varying amounts of �nancial information4 , and �rms di�er in the amount of
information they make public5

This paper is related to a large literature on the so-called persuasion games,
in which a Sender ho to communicate a state of the world to a Receiver, who then
selects an action that a�ects payo�s of both sides. Past research on persuasion
games has largely concluded that in general, the Receiver will learn the state of
the world6. This is because if the Sender chooses to pool states over some set S,
then, whenever the news fall in S, he will always want to deviate to disclosing
the �best� news in that set, as this will give him a higher payo� than letting
the Receiver make a decision based on her posterior belief conditional on state
being in S. This paper, however, di�ers from much of the previous research
by examining what happens when the Sender has to commit to a particular
disclosure strategy before learning the state. Using the commitment assumption,
I am able to show that in wide range of cases, full disclosure is not an equilibrium
strategy for the Sender - just like in many real-world instances, agents tend to
hide some information.

There are a number of situations in which governments or similar informed
agents commit to a revelation strategy beforehand. For example, hate speech or
incitement of violence are restricted in many jurisdictions, and these restrictions
are typically speci�ed in laws that are approved in advance and cannot be
changed even when the government feels it is advantageous to release a particular

2On the one hand, studies have shown that media bias has played a role in determining
election outcomes in Peru and Brazil (Boas, 2005), Mexico (Lawson and McCann, 2005), and
Russia (Enikolopov et al., 2011). On the other hand, Dyczok (2006) questions the e�ectiveness
of censorship in supporting Kuchma's government in Ukraine; Kern and Hainmueller (2009)
report that the East German government enjoyed greater public support in regions where the
population had access to West German television; Goldstein (1989) shows that censorship
of anti-government caricatures in nineteenth-century France could increase support for the
message they contained.

3Eij�nger and Geraats (2006). See also Geraats (2002).
4Pérignon and Smith (2010).
5Including information on their product quality (Jin and Leslie, 2003), �nancial status (see

a review by Healy and Palepu, 2001), or environmental performance (Patten (2002), Cho and
Patten (2007)).

6Grossman (1981), Milgrom (1981), Seidmann and Winter (1997), Koessler (2003), and
Mathis (2008) show that under fairly general settings, the Receiver will learn every state of
the world at an equilibrium. Exceptions to the full disclosure result have largely been due
to uncertainty over whether the informed agent has precise information (Shin, 1994), or due
to informed agent's preferences being either uncertain (Wolinsky, 2003) or non-monotonic in
decision-maker's action (Giovannoni and Seidmann, 2007).
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piece of information7. Even in countries without rule of law, censorship of
politically sensitive news is often regulated by bureaucratic instructions, rather
than by decisions that are made every time the news arrive8. Similarly, �rms can
commit to revealing or concealing particular facts (such as information about
their product quality, �nancial status, etc.) by asking for an evaluation by an
independent expert (e.g. an auditor assessing a company's �nancial situation,
or a reviewer evaluating a theatre play) who then makes her �ndings public.
Commitment may also arise as a credible equilibrium strategy in a repeated
interaction - for example, central banks can credibly commit to a particular
level of transparency, since they are concerned about their reputation.

One recent work - namely, Kamenica and Gentzkow (2011), hereinafter KG
- is similar in spirit to this paper in that it also posits an informed agent who
commits to a disclosure policy beforehand. The crucial di�erence between this
paper and KG is that in KG, the Receiver's preferred action is a generic function
of her belief about the state. In this paper, however, the Receiver always wants
to take a high action if the news are above her preference parameter. The Sender,
however does not know the value of that preference parameter, but only it
distribution. Hence, the Sender's expected payo� is increasing in the Receiver's
posterior belief about the news. This fact drives the results summarised above
and ensures that, unlike in KG, the equilibrium disclosure policy is simple -
signals are deterministic, news that are not disclosed precisely are pooled into
one set, and that set has a small number of disjoint intervals.

Hence, the idea that the probability that the Receiver takes an action which
the Sender likes increases with the posterior belief about the news is one of the
key ideas behind this paper. This framework is relevant to a large range of
settings in which an informed party is dealing with a population of decision-
makers who have di�erent preferences. For example, the number of citizens
willing to support the government can be higher the image of the government
is better. The number of investors who choose not to sell a currency may be
greater if the belief about the fundamentals of the economy is more favourable.
More customers will buy a �rm's product if they hold a more favourable opinion
about its quality. Accordingly, this paper shows that in these situations, the
informed party will opt for a simple disclosure strategy.

The rest of the paper is structured as follows. Section 2 presents the model,
and discusses the interpretation of its key features. Section 3 analyses the model.

7We do not normally think of hate speech or incitement of violence as conveying informa-
tion. However, we can imagine that some types of e.g. racist incitement may be convincing
to the public, while others serve only to discredit the speaker and the racist message. In this
sense, an e�ective racist demagogue is �bad news�, while an ine�ective speaker is �good news�.

8A study of press censorship in 19th century Europe by Goldstein (2000) mentions a
large number of censorship laws and bureaucratic circulars issued to newspapers by various
governments. Kris (1941) describes a twenty-page set of instructions, given to Czechoslovak
newspaper editors by the Nazi German occupation authorities in 1939, explaining which kinds
of news stories would be allowed to be published in future. In either case, the authorities
had to commit to a speci�c set of instructions, rather than examining every article that the
newspapers wanted to publish - probably because the latter approach would be too time-
consuming.

4



It �rst progressively narrows down the set of possible equilibrium strategies of
the Sender, showing that the optimal news management policy comes from a rel-
atively small set of simple strategies. It then derives optimal news management
strategies for some kinds of the Receiver's preference distributions. Finally,
Section 4 concludes.

2 Model

There are two players: Sender (he) and Receiver (she). State of the world is a

pair (τ, ω) ∈ [0, 1]
2
; ω is the news what the Sender chooses whether to disclose,

and τ is the Receiver's preference parameter, which is her private information.
Higher values of ω indicate �better� news, and higher values of τ suggest that the
Receiver is predisposed against the Sender. Nature draws τ from a distribution
F and ω from a distributionG; the associated densities are f and g. Assume that
τ and ω are independent. Further, assume that f is continuously di�erentiable,
and that g is strictly positive everywhere on [0, 1].

The Sender has a set of messagesM available to him. The Sender's strategy
is a function h : [0, 1] → ∆ (M) that associates every realisation of the state
with a probability distribution over the set of messages. I will refer to a prob-
ability distribution p = h (ω) ∈ ∆ (M) as a signal, and I will say that a subset
K of the news space [0, 1] induces a signal p if h (ω) = p ∈ ∆ (M) for every
ω ∈ K. A signal h (ω) = p ∈ ∆ (M) includes a message m ∈ M if m occurs
with a strictly positive probability when the news are ω.

The Receiver chooses an action c ∈ {0, 1}, where 1 is the action that the
Sender prefers9.

The timing of the game is as follows. First, the Sender commits to a disclo-
sure policy by choosing h, which is announced to the Receiver. Then, Nature
draws τ and ω from F and G, respectively; and the Receiver learnsτ . Next,
the Receiver learns the element of P to which ω belongs. The Receiver then
chooses c ∈ C. Finally, payo�s are realised in the following way: the Sender's
payo� equals c, while the Receiver's payo� is c(ω − τ).

Let us pause for a moment to examine the intuition behind the model. In
the context of this model, the Sender can be a government deciding how to
communicate politically relevant news, a central bank picking its level of trans-
parency, or a �rm choosing whether to disclose the quality of its product. The
Sender's choice of a signal represents his chosen revelation strategy.

We can think of the Sender's revelation strategy as partitioning the news
space into subsets, with each subset inducing a di�erent signal. For example, the
Sender can opt for full disclosure, in which the Receiver always learns the exact
value of news. This corresponds to partitioning the news space into singletons,
so that each element of the partition induces a signal that includes a unique
message. On the other extreme, a partition that contains only one set (the entire
[0, 1] interval) reveals no information at all to the Receiver. A more complicated

9The analysis can be easiliy extended to a case when the Receiver's action set is an arbitrary
compact subset of R.
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partition might consist of sets S1 = [0, 0.1]
⋃

[0.9, 1], S2 = [0.4, 0.6], and all
singletons that do not belong to these sets, and then choosing a degenerate
signal (i.e. a signal that only includes one message) for each element of the
partition. Under such a partition, the Receiver can learn that the news is
�exceptional� (very far from 0.5); that it is �average� (very close to 0.5); and
if it is somewhere else, she learns the news exactly. Additionally, since signals
need not be degenerate, the Sender can choose an even more complex revelation
strategy.

Thus, the game gives the Sender a very large strategy space. The partition
that he chooses can pool the news into a large number of sets; these sets need
not be connected - each can consist of a large number of disjoint intervals; and
each set can induce a signal that includes a large number of messages.

The Sender always wants to choose h that would encourage the Receiver to
pick higher c. The Receiver, on the other hand, is better o� with larger c if and
only if the news is good enough - namely, when it exceeds a threshold given by
her preferences (i.e. when ω ≥ τ). Higher τ thus means that the Receiver is
more reluctant to choose an action that the Sender prefers. The distribution F
can thus be seen as a distribution of public opinion. For example, when F has
a larger mass on its right tail, this implies there is a large number of individuals
that would vote against the government unless the news is very good.

Several assumptions are implied when the model is applied to speci�c sit-
uations. First, it is assumed that the Receiver's preferences are independent
of the news. This may not hold in the long term - for example, a citizen may
become less inclined to support the government if bad news keep coming - but
in a one-shot interaction this should hold. Alternatively, we may think of τ as
indicating the Receiver's preferences a�ected by factors other than those cap-
tured in ω - for instance, if the news ω relate to how well the government is
conducting its foreign policy, then τ can show a citizen's level of support for its
economic programme.

Furthermore, we can think of ω as representing the valence of the incumbent
candidate relative to that of the challenger. The incumbent can manipulate
information to convince voters that his valence is high. On the other hand, τ
can represent a voter's political position, which is not a�ected by news about
the candidate's valence10.

Additionally, the model assumes that the Sender can hide the news or reveal
it up to a subset of the news space, but he cannot lie. In some situations, this is
straightforward - for instance, a government can either ban hate speech or permit
it. In other instances, reputational losses to governments, �rms or central banks
that are caught lying may be so large that lying is never an optimal strategy.
Finally, we may think of revealing information as providing hard evidence of
the news (photos, videos, testimony by independent media) - evidence which
cannot be falsi�ed. In this setting, lying (or telling the truth with no evidence
to support it) leads the Receiver to ignore the Sender's message, and therefore
corresponds to a no disclosure case (a partition consisting of one set).

10I thank Miguel Ballester for suggesting this interpretation.
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3 Analysis and Results

3.1 General Results

Suppose the Receiver knows that the Sender has chosen a disclosure policy h.
Then if the Receiver gets a messagem, her expected payo� from taking an action
c, given her preference parameter τ , equals E [c(ω − τ) | m] = cE [ω | m] − cτ .
If τ < E [ω | m], this expression is maximised at c = 1, while if τ > E [ω | m], it
is maximised at c = 0. This describes the Receiver's best response.

Thus, given any realisation of the signal, the Sender's expected payo� equals
the probability that the Receiver's preference parameter τ is below the expeced
value of the news given that realisation - in other words, it equals F (E [ω | m]).

Now we can narrow down the set of possible optimal strategies of the Sender.
To proceed further, I will make an assumption about the possible signals that
are available to the Sender.

Assumption 1. The Sender's strategy h includes a �nite number of non-
degenerate signals, and each signal includes a �nite number of messages.

With this assumption in mind, we can obtain the following result about the
Sender's strategy.

Proposition 1. Suppose that the Sender has chosen a disclosure strategy h.
Then there exists a a strategy ĥ consisting only of degenerate signals that gives
the Sender the same equilibrium payo�.

Proof. See Appendix
Proposition 1 says that the Sender's payo�s under any disclosure strategy of

the Sender can be obtained under some strategy that only contains degenerate
signals. Thus, we can restrict the Sender's strategy space to strategies in which
the Sender assigns a message to every element of the news space with probability
one.

This result makes it possible to represent any strategy of the Sender by a
partition P, such that all news that are associated with the same message belong
to the same element of P, and news that are associated with di�erent messages
belong to di�erent elements of P.

Assumption 1. The number of non-singleton sets in P is bounded by some
�nite number N .

This can be seen as a restriction on the language that is available to the
Sender. Denote by P the set of all partitions of the [0, 1] interval that meet this
assumption.

Given that ω ∈ S ∈ P, the Sender's expected payo� equals the proba-
bility that τ < E [ω | ω ∈ S], which is F (E [ω | ω ∈ S]). Denote by µS the
probability that ω falls in S (i.e. the measure of S associated with g). Then,
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µS ≡
´
ω∈S

g (ω) dω. Then the Sender's overall expected payo� from choosing P

equals

v (P) =

ˆ

S∈P

F (E [ω | ω ∈ S]) dµS

which the Sender maximises by choosing P ∈ P. To proceed with the
analysis, we must �rst check whether the maximum of v (P) is well-de�ned on
P. This is not a trivial problem, since P, the set of partitions with a bounded
number of non-singleton elements, is an in�nite set. Fortunately, it is possible to
show that P can be represented by a compact set, hence ensuring the existence
of a maximum of v (P). This is captured in the following proposition, the proof
of which is given in the Appendix:

Proposition 2. max
P∈P

{v (P)} exists.
This proposition ensures the existence of a pure-strategy equilibrium.
Recall that by assumption, the number of non-singleton sets is �nite. From

now on, we can restrict our attention only to those partitions for which all non-
singleton sets have positive measure. This is without loss of generality - if a
partition includes a �nite number of zero-measure sets, their overall measure is
zero as well, and hence they can be split into singletons without a change in the
Sender's payo�.

By similar reasoning, we can make a further assumption that all positive-
measure elements of P are collections of intervals. This is because points that
are not attached to intervals11 can be converted into singletons without a change
in payo�.

Note that if a set S ∈ P is a singleton {ω}, then dµS = g (ω), and E [ω | ω ∈ S] =
ω. If S is not a singleton, i.e. if µS > 0, let tS ≡E [ω | ω ∈ S] = 1

µS

´
ω∈S

ωg (ω) dω.

The expression for the Sender's expected payo� then becomes:

v (P) =
∑

S∈P : µs>0

F (tS)µS +

ˆ

ω∈S∈P : µS=0

F (ω)g(ω)dω

Clearly, the strategy that maximises it depends on the shapes of f and g.
In order to characterise it, de�ne for every positive-measure set S a function
zS (ω) ≡

´ ω
tS

[f (tS)− f (x)] dx. Now consider a partition P that is a candidate
for an optimal partition. We can check for several kinds of deviations from P.
First, we can take some news ω that are pooled into a positive-measure set A
and disclose them, i.e. turn them into singleton elements of the partition. We
can also remove them from A and pool them with some other set B instead.
Finally, we can also take some other news that under P are not pooled into any
positive-measure set (i.e. that forms a singleton element of P), and merge them

11I.e. all ω ∈ S for which there exists a neighborhood T that contains no other elements of
S besides ω.
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with some A ∈ P. If P is optimal, none of these deviations can be bene�cial.
This is captured in the following necessary condition for an optimum:

Proposition 3. Suppose that P maximises v (·). Then the following must hold

for every positive-measure set A ∈ P:

1. zA (ω) ≥ 0 for any ω ∈ A

2. zA (ω) ≥ zB (ω) for any ω ∈ A and any positive-measure set B ∈ P

3. zA (ω) ≤ 0 for any ω such that {ω} forms a singleton element of P

The proof of this proposition is in the Appendix, but the reasoning behind it is
a follows. Suppose that for some positive-measure A ∈ P we take a set M ⊆ A
(e.g. an interval) and remove it from A, converting it into singletons instead.
At the margin, when the measure of M is close to zero - i.e. when M is close
to being a single point ω - the change in the Sender's payo� comes in two ways.
First, ω is no longer pooled with A, so the contribution of the news ω to the
Sender's payo� is now F (ω) instead of F (tA). This change in payo� equals
F (ω) − F (tA) =

´ ω
tA
f (x) dx. Second, tA - the expected news over A - change

because ω is removed fromA, and this change is represented by (tA − ω) f (tA) =
−
´ ω
tA
f (tA) dx. The sum of these two e�ects equals

´ ω
tA

[f (x)− f (tS)] dx =

−zA (ω), which must be negative if the deviation is not pro�table. Since we can
selectM to be anywhere within A, this must hold for any ω ∈ A. Similarly, any
ω /∈ A can be attached (together with its neighbourhood M) to A; this would
give rise to the opposite e�ects on payo�, and by similar reasoning, zA (ω) must
be negative. Finally, removing ω from A and attaching it to some other set
B ∈ P creates a combination of these e�ects for A and B; hence, zA (ω) ≥ zB (ω)
must hold for P to be optimal.

On a technical note, observe that any positive-measure set S ∈ P can be
split into sets S1 and S2 such that tS = tS1

= tS2
; the resulting partition will

yield the same payo� to the Sender as P.12 This means that the Sender has,
strictly speaking, in�nitely many equilibrium strategies that all yield the same
expected payo�. To simplify the analysis, we can assume that, when choosing
between such strategies, the Sender will always choose a partition with the
smaller number of positive-measure sets - perhaps because, all other things
being equal, he has a preference for �simpler� strategies. Thus, all sets S ∈ P
for which the expected news tS are the same will be combined into one set.

Using the condition in Proposition 3, and the simpli�cation described above,
we can substantially narrow down the set of possible equilibrium strategies, in
the following way:

12To see that this is the case, denote by P̃ the partition that is similar to P except that S
is split into S1 and S2 such that tS = tS1

= tS2
. Note that µS = µS1

+ µS2
. Then,

v
(
P̃
)
− v (P) = F (tS)µS − F

(
tS1

)
µS1 − F

(
tS2

)
µS2

=

= F (tS)
(
µS1

+ µS2

)
− F

(
tS1

)
µS1
− F

(
tS2

)
µS2

= 0

Thus, P̃ and P give the Sender the same expected payo�.
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Proposition 4. For any g, and for any f that has no horizontal sections,

every equilibrium partition P contains at most one positive-measure set.

Proof: see Appendix.
Proposition 4 ensures that at the optimum, almost all shapes of f induce

a disclosure strategy under which all the news that do not belong to singleton
elements of P are pooled into at most one set. In other words, some news are
revealed precisely, while others are not revealed at all (i.e. when they occur, the
only thing the Receiver learns is that they are in a set of news that the Sender
prefers to pool together). Thus, the Sender's equilibrium strategy is the strategy
of censorship - some news are disclosed, while others are hidden. The Sender
will never prefer a strategy under which the news are revealed imprecisely (i.e.
pooled into several positive-measure subsets of the news space), even though
such a strategy is possible in this setting.

Let us denote by S the positive-measure set that is a part of P at the
equilibrium. By eliminating all partitions with more than one positive-measure
set, Proposition 5 reduces the problem of determining the optimal partition
to �nding the optimal set S. This simpli�es the problem substantially; but
nevertheless, there are still many potential shapes of S. In particular, S can be
considered more or less complex depending on the number of disjoint intervals
it includes. The following proposition puts a restriction on the complexity of S:

Proposition 5. If f has m <∞ local weak maxima, then at the equilibrium,

S includes no more than m disjoint intervals.

Proof: see Appendix.
This proposition underscores the importance of f , the distribution of the

Receiver's preference parameter, in determining the optimal revelation strategy.
It shows that in most cases, we should not expect a very complicated disclosure
policy. Optimal disclosure strategy will only be �complex� - i.e. include a set of
censored news consisting of many disjoint intervals - when the distribution f of
the Receiver's preference parameter is �complex� as well (i.e. has many peaks).
For distributions with a small number of peaks, this greatly reduces the space
of possible optimal strategies. This result suggest that for the most part, we
are unlikely to see very complex disclosure and censorship policies in real-life
situations, as long as the Sender is optimising.

3.2 Optimal Disclosure Policies

With these results in mind, we can look at the actual equilibrium disclosure
policies for some speci�c distributions of the Receiver's preferences. We can
start by looking at two speci�c cases - the case of full disclosure, and the case
when all news are hidden.

Proposition 6.1. Full disclosure is an equilibrium strategy if and only if f is

weakly increasing. Furthermore, full disclosure is the unique equilibrium strategy

if and only if f is strictly increasing.
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Proposition 6.2. Pooling all the news is the unique equilibrium strategy if f
is strictly decreasing.

Proofs: see Appendix.
Recall that τ is a threshold above which the news are good enough for the

Receiver to take action c = 1, which the Sender prefers. Increasing f implies
that the Receiver's τ is more likely to be high - i.e. she is predisposed against
the Sender. Similarly, decreasing τ means that the population includes a large
number of Receivers with a low threshold for supporting the Sender. Thus, full
revelation of information is an equilibrium strategy for a government that faces
a skeptical public, while total censorship is an optimal choice if the public is
largely willing to support the government.

This result may seem somewhat paradoxical, but it has an intuitive expla-
nation. If the news is disclosed, the Receiver chooses c = 1 when the news is
above her threshold τ . If the news is censored, the Receiver selects c = 1 when
tS , the expected value of news over the set of censored news, is above τ . When
the distribution of τ is increasing, τ is likely to be high, and hence there is a
high probability that, if news are pooled over some set S, their expected value
over S ends up below τ . On the other hand, if the news is not censored, there
is some probability that it ends up above any given threshold - thus giving the
Sender a higher chance of getting c = 1. Similarly, if f is decreasing, tS is more
likely to be above τ , and censorship becomes a safe way for the Sender to secure
the Receiver's support.

We can also see that full revelation is a rather special case. More typically,
some information will be censored.

We can now look at more general cases. Two types of preference distributions
are particularly interesting - the one in which f is unimodal, and the one in
which it is U-shaped. The former case corresponds, for example, to a society
in which most individuals tend to be moderate with respect to their willingness
to support the government. The latter case describes a polarised society with a
large number of die-hard supporters and opponents of the government.

Proposition 7.1. If f strictly increasing on (0, k) and strictly decreasing on

(k, 1) for some k ∈ (0, 1), then there is a unique equilibrium strategy S = [a, 1],
such that 0 ≤ a < k, and tS > k.

Proposition 7.2. If f strictly decreasing on (0, k) and strictly increasing on

(k, 1) for some k ∈ (0, 1), then there is a unique equilibrium strategy S = [0, b],
such that k < b ≤ 1, and tS < k.

Proofs: see Appendix
Hence, the unimodal and the U-shaped distributions induce disclosure poli-

cies under which either the best news, or the worst news are not disclosed. It is
easy to see that full disclosure and full pooling emerge as special cases of either
the unimodal f or the U-shaped f when k equals 1 and 0.

Now take the case when f is unimodal with a peak at k and thus S = [a, 1].

Suppose that the density of Receiver's preferences changes to another f̂ , which
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is also unimodal and induces a censorship strategy Ŝ = [â, 1], with an expected

value tŜ . But suppose that f̂ has a peak k̂ further to the right - far enough that

k̂ > tS . From Proposition 6.1 it follows that tŜ > k̂. Thus, tŜ > tS , i.e. the

expected value of the news over Ŝ is greater than over S - which means that
fewer news are being censored under f̂ than under f . Similarly, if f is replaced
by a unimodal f̃ with a peak k̃ < a, and a new set of censored news S̃ = [ã, 1],
then we will have ã < k̃ < a - meaning that more news will be censored under
f̃ .

Thus, a change that preserves the general shape of the density of preferences
but moves its peak far enough will change the extent to which news are censored
at equilibrium. A move to a density with a peak further to the right - i.e. to a
distribution corresponding to a more skeptical audience - will reduce the amount
of news that are being hidden, and vice versa. It can be easily shown that similar
e�ects will happen when the original density is U-shaped. In this case, a change
to a density with k further on the left (and thus a greater mass of τ on the right,
implying a more skeptical audience) will result in a smaller set of censored news.

The idea that more extensive revelation is optimal if the Receiver is pre-
disposed against the Sender has several implications. On the normative side,
consider the often raised question13 of whether hate speech should be restricted.
Suppose that the government is trying to minimise the number of citizens who
choose to adopt a racist mentality, and that the citizens' choice depends on
how eloquent and persuasive the message is. The analysis above suggests that
a restriction on hate speech will be e�ective if citizens are ex ante inclined to
reject the hate message. If they are predisposed to believe it, restrictions will
be counterproductive - seeing that the racist message is suppressed, citizens are
likely to assume that it is su�ciently convincing for them.

On a similar note, a central bank that tries to prevent investors with selling
the currency should opt for less transparency if the investors have a higher ex
ante trust in the currency stability. This is because if investors are enthusiastic,
the posterior belief that they form upon receiving no news is still su�ciently
good for them to keep the currency. On the other hand, a central bank facing
reluctant investors is better o� with revealing more information, since, seeing
that the news are not revealed, they will conclude that they must be bad enough
for them to start selling.

On the positive side, these results indicate a crucial link between informa-
tion disclosure and the distribution of public opinion. Much of the previous
research14 has looked at censorship as a determinant of public opinion. In con-
trast, the results above suggest that a reverse link may also be in place - the
optimal (from a government's point of view) degree of censorship depends on
the distribution of views within the population.

In particular, we can expect more political censorship in countries where
the public is less inclined to oppose the regime. On the other hand, societies
in which citizens have less trust for the government are likely to enjoy greater

13For example, by Herz and Molnar, eds (2012).
14See references in the Introduction.
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media freedom, even when the regime is authoritarian. When the population is
skeptical but the government nevertheless insists (for some exogenous reasons)
on censoring the news, such censorship may be counterproductive for the regime,
and may undermine its credibility - which is probably what happened following
the Moscow Metro accident described in the beginning of the paper.

As noted above, an increase in the share of citizens who are opposed to the
government shifts the optimal disclosure strategy towards greater openness, and
vice versa. Thus, a change in the public's attitude towards the government may
be a reason for changes in media freedom. For example, suppose that a regime
experiences a suddent boost in its popularity - due to, for instance, better
than expected economic performance, or due to an outbreak of war causing
the population to rally behind the government. How would the government
respond? Traditionaly15, it has been thought that in the former case, economic
development would lead to political liberalisation. On the other hand, some
recent observers - e.g. Bueno de Mesquita and Downs (2005) discussing China
- have questioned this conclusion. This paper suggests one possible channel
through which strong economic performance may lead to less political freedom -
by making citizens less inclined to oppose the government when no information is
released, economic growth might lead an optimising ruler to tighten censorship.

On the other hand, when facing a decline in popular support, a rational
authoritarian ruler may choose to increase media freedom. Hence, a rise in
popular opposition to a regime may coincide in time with political liberalisation.
This fact has been noted long ago16, and was usually interpreted as suggesting
that liberalisation makes an authoritarian government more vulnerable. The
analysis above suggests that an alternative mechanism may be in place: political
liberalisation, at least in the area of media freedom, may be a rational reaction
to a loss of public trust in the government.

4 Conclusions

This paper has examined optimal information disclosure by a Sender, such as
a government, who commits to a particular disclosure strategy to induce a Re-
ceiver to take a favourable action.

In general, the Sender's strategy space can be quite large - subject to a
few technical restrictions, the Sender can send di�erent messages for di�erent
subsets of the news space, thus pooling news in many possible ways. These
subsets need not be connected. Furthermore, the messages need not be sent in
a deterministic way - Sender can randomise over messages. Nevertheless, the
set of optimal strategies was found to be quite small - and, in general, optimal
strategies are simple. First, the Sender does not need to mix over messages -

15See a highly in�uential work by Lipset (1959).
16Writing about the French Revolution, Alexis de Tocqueville has famously noted that �the

regime which is destroyed by a revolution is almost always an improvement on its immediate
predecessor, and experience teaches that the most critical moment for bad governments is the
one which witnesses their �rst steps toward reform� (Goldhammer and Elster, 2011).
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at the optimum he can send a speci�c message with probability one for every
value of the news. Second, the Sender will not want to pool the news into many
di�erent sets. Instead, he will disclose some news precisely, and hide other news
completely by pooling them into one set. It was thus established that censoring
news is the equilibrium strategy. Other possible strategies - such as revealing
news imperfectly (up to some subsets of the news space) - are not optimal for
the Sender. Third, the set of news that are pooled together is likely to be simple
as well. In fact, unless the Receiver's preference distribution is very complex,
the set of news that are suppressed will consist of only a small number of disjoint
intervals.

In practice, this means that, for example, a government that has the ability
to restrict the �ow of news will choose the news that will be suppressed, and will
allow the media to disclose the rest. It will not try to force the media to send
random messages. Nor will it require that the media disclose the news approx-
imately (for example, by vaguely distinguishing between good and bad news
without giving further detail). Even though these strategies are theoretically
possible, they will not make the government better o� than a simple censorship
strategy.

Optimal revelation strategy will largely depend on the distribution of the
audience's preferences. Much of the previous research on censorship has anal-
ysed its e�ect on the views of the public. This paper suggests an alternative
link between political communication and public opinion: the distribution of
political views in the society a�ects the optimal disclosure policy.

In general, more information is likely to be revealed if the Receiver is predis-
posed against the Sender. For instance, we can expect less political censorship
when the distribution of views in the population is skewed towards opposing
the government. Alternatively, when censorship is present under such circum-
stances, we can expect it to hurt the Sender. Thus, policies such as banning
racist hate speech are e�ective when the public opinion is skewed towards re-
jecting racism; when the public is largely sympathetic to the racist message, a
ban can do more harm than good. Similarly, a central bank should opt for more
transparency when facing skeptical public.

By a�ecting optimal censorship, a shift in the distribution of public opinion
can become a cause of political change. Thus, we can expect an optimising
government to restrict freedom of information as a reaction to an increase in
public support. In contrast, a loss of popularity can lead the government to
relax censorship.
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5 Appendix

5.1 Proof of Proposition 1

Under Assumption 1, the number of non-degenerate signals induced by h is
�nite. Take all non-degenerate signals induced by zero-measure subsets of the
news space [0, 1]. We can replace each of these signals by some degenerate
signal - since their number is �nite, their total measure is zero, and hence this
operation does not change the Sender's expected payo�.

Now take a non-degenerate signal p that is induced by a positive-measure
set of news K ⊆ [0, 1]. Suppose p includes n messages m1, ...,mn that occur
with probabilities p1, ..., pn. Let E [ω | mi] be the expected value of ω given
that a message mi is received. Then if message mi is sent, the Sender receives
an expected payo� of F (E [ω | mi]). Hence, if news happen to be in K, the

Sender's expected payo� is
n∑
i=1

piF (E [ω | mi]). Now let us modify h in the

following way. Divide K into n subsets K1, ..,Kn such that µ (Ki) = pi
µ(K) and

E [ω | ω ∈ Ki] = E [ω | ω ∈ K] for all i ∈ {1, ..., n} - this can always be done,
since K is a positive-measure set. Let each Ki induce a degenerate signal that
includes messagemi only. Then the Sender's expected payo� if the news happen
to be in K is the same as before. We can do this for every positive-measure
subset that induces a non-degenerate signal. Once this is done, call the new
strategy ĥ. It will give the Sender the same payo� as h�

5.2 Proof of Proposition 2

Consider a partition P ∈ P. We know that the number of non-singleton sets
included in P is at most some �nite number N . We can assign a number
{1, ..., N} to every non-singleton set that is part of P, and also assign zero to
the union of all singletons in P. Now every point in the [0, 1] interval can be
assigned a number {0, 1, ..., N}, depending on the set S ∈ P to which it belongs
under our chosen partition (with zero indicating that this point is a singleton
element of the partition). Listing these numbers for all points in the unit interval
(i.e. a mapping from [0, 1]to {0, 1, ..., N}) can describe any partition P ∈ P.

The set P can therefore be fully described by a collection of such listings.

This collection is a set {0, 1, ..., N}[0,1]. We know that the set {0, 1, ..., N} is
compact, and Tikhonov theorem states that a Cartesian product of compact

sets is compact as well. Therefore, the set {0, 1, ..., N}[0,1], and by extension P,
is compact. Hence, v (·) - being a continuous function with compact support P
- must, by Weierstrass theorem, have a maximum�
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5.3 Proof of Proposition 3

To prove (1), take a partition P containing a positive-measure set A. Now take
a w belonging to the interior of A and suppose that zA (w) < 0.17 We want to
prove that P is not optimal.

Consider a deviation from P to a partition P̂ that di�ers from P in that an
interval [w, r] is removed from A and instead all the news in [w, r] are disclosed

(i.e. turned into singleton elements of the partition). If r = w, then v
(
P̂
)

=

v (P). Recall that v (P) =
∑

S∈P : µs>0

F (tS)µS +
´

ω∈S∈P : µS=0

F (ω)g(ω)dω. Then

v
(
P̂
)
− v (P) = F

(
tA\[w,r]

)
µA\[w,r] +

ˆ r

w

F (ω)g(ω)dω − F (tA)µA

Note that that

µA\[w,r] =

ˆ

ω∈A

g (ω) dω −
ˆ r

w

g (ω) dω

and

tA\[w,r] =

´
ω∈A

ωg (ω) dω −
´ r
w
ωg (ω) dω

´
ω∈A

g (ω) dω −
´ r
w
g (ω) dω

Taking the derivative of v
(
P̂
)
− v (P) with respect to r yields

∂
[
v
(
P̂
)
− v (P)

]
∂r

= g (r)
[
f
(
tA\[w,r]

) (
tA\[w,r] − r

)
− F

(
tA\[w,r]

)
+ F (r)

]
= −g (r) zA\[w,r] (r)

If r = w, then A \ [w, r] = A, and v
(
P̂
)
− v (P) = 0. If P is an optimal

strategy, that di�erence must be weakly decreasing in r at r = w. But if
zA (w) < 0, then

∂
[
v
(
P̂
)
− v (P)

]
∂r

∣∣∣∣
r=w

= −g (w) zA (w) > 0

as g is assumed to be strictly positive everywhere. Therefore, the Sender bene�ts
from increasing r, which means that P is not optimal.

Parts (2) and (3) are proved analogously. To prove (2), suppose that for some
positive-measure sets A,B ∈ P, zA (w) < zB (w) for some w ∈ A. Consider a

17The assumption that w is in the interior of A is without loss of generality, since for every
w on the boundary of A such that zA (w) < 0, there must - since zA (w) is continuous - be
another w′ in the neighborhood of w for which this property also holds.
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deviation from P to P̂ in which an interval [w, r] is removed from A and pooled

with B. Again, v
(
P̂
)

= v (P) for r = w. But then

∂
[
v
(
P̂
)
− v (P)

]
∂r

∣∣∣∣
r=w

= −g (w) zA (w) + g (w) zB (w) > 0

Hence, the Sender bene�ts from a deviation in which r is increased, and thus P
cannot be an equilibrium strategy.

Finally, to prove (3), assume that zA (w) > 0 for some positive-measure set
A and for some w that is not part of any positive-measure set. Now take some
interval [w, r] such that every ω ∈ [w, r] is a singleton element of the partition,
and consider a change from P to P̂ in which this interval is pooled with A.
Then

∂
[
v
(
P̂
)
− v (P)

]
∂r

∣∣∣∣
r=w

= g (w) zA (w) > 0

so again there is a pro�table deviation�

5.4 Proof of Proposition 4

Take a distribution f that has no horizontal sections. Suppose that there exists
a partition P which includes two positive-measure sets A and B, and assume
without loss of generality that tA < tB . We can now prove in two steps that
P is not an optimal partition for the Sender, i.e. that there exists a partition
which gives him a higher expected payo�.

Step 1. For P to be an optimal partition, f must be increasing on [tA, tB ].
Suppose that P is an optimum partition, and consider the following devia-

tion: take C ⊆ A such that tC = tA = tA\C .
18 Now remove it from A and pool

with B; call the resulting partition P ′. Then

v (P)− v (P ′) = F (tA)µA + F (tB)µB − F
(
tA\C

)
µA\C − F

(
tB

⋃
C

)
µB

⋃
C =

= F (tA)µA + F (tB)µB − F (tA) (µA − µC)− F
(
tB

⋃
C

)
(µB + µC) =

= F (tA)µC + F (tB)µB − F
(

µB

µB+µC
tB + µC

µB+µC
tA

)
(µB + µC)

The expression above must be non-negative for P to be the optimal partition.
Denote γ ≡ µC

µB+µC
, and note that we can choose µC to be of any value between

0 and µA. Then

γF (tA) + (1− γ)F (tB) ≥ F (γtA + (1− γ) tB) , ∀γ ∈
[
0,

µA
µA + µB

]
Now consider a deviation from P to P ′′ of the following form: take D ⊆ B

such that tD = tB = tB\D, remove D from B and pool it with A. Then

18For example, if A is an interval, we can choose C to be a middle part of A.
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v (P)− v (P ′′) = F (tA)µA + F (tB)µB − F
(
tB\D

)
µB\D − F

(
tA

⋃
D

)
µA

⋃
D =

= F (tA)µA + F (tB)µB − F (tB) (µB − µD)− F
(
tA

⋃
D

)
(µA + µD) =

= F (tA)µA + F (tB)µD − F
(

µA

µA+µD
tA + µD

µA+µD
tD

)
(µA + µD)

Denote δ ≡ µA

µA+µD
; note that µD can be chosen between 0 and µB . Then

δF (tA) + (1− δ)F (tB) ≥ F (δtA + (1− δ) tB) , ∀δ ∈
[

µA
µA + µB

, 1

]
This inequality and the previous one, taken together, imply that F must be

convex on [tA, tB ], and thus f must be increasing on that interval. Since we
have assumed that f has no horizontal sections, it must be strictly increasing
in the neighbourhood of tA.

Step 2. If f is strictly increasing in the neighbourhood of tA, then P cannot

be optimal.

If f must be increasing on (tA, tB), then zA (ω) =
´ ω
tA
f (tA) − f (x) dx < 0

for every ω ∈ (tA, tB). If P is an optimal partition, then by Proposition 2, no
news in the interval (tA, tB) belong to A.

On the other had, increasing f implies that f (tB) > f (tA). Then for every
ω ≥ tB , zA (ω) =

´ ω
tA
f (tA) − f (x) dx <

´ ω
tB
f (tA) − f (x) dx <

´ ω
tB
f (tB) −

f (x) dx = zB (ω). Hence, if P is an optimal partition, then by Proposition 2,
no ω ≥ tB can belong to A.

Therefore, optimal P implies that tA ≥ max {A}. But this is not possible,
since tA is the expected value of ω over A.

To summarise, we have assumed that P contains two positive-measure sets,
A and B. If f is not increasing between tA and tB , then P cannot be optimal.
If f is increasing on that interval, P cannot be optimal either. Thus, a partition
with two positive-measure sets cannot from part of an equilibrium. But Propo-
sition 1 establishes that an equilibrium must exist, So we can conclude that an
equilibrium partition has at most one positive-measure set�

5.5 Proof of Proposition 5

We have earlier established that without loss of generality S can be thought of
as a countable union of disjoint intervals. Thus, we can write S =

⋃
i∈I

[ai, bi]

such that 0 ≤ ai ≤ bi ≤ ai+1 ≤ 1, ∀i ∈ I, where I is countable.
Let us start by taking a set S comprising |I| disjoint intervals. What is the

smallest number of local maxima that f needs to have for S to be the Sender's
equilibrium strategy?

Observe that since we have assumed the number of weak local maxima to
be �nite, f cannot be constant at any interval. This means that zS (·) cannot
equal zero on any interval [p, q] ⊆ [0, 1], since if it was zero, this would mean
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that f (ω) = f (tS), ∀ω ∈ [p, q], i.e. that f is horizontal. The fact that zS (·)
cannot be zero on an interval, together with Proposition 2, implies that zS (ω)
is increasing at ω = ai and decreasing at ω = bi, ∀i ∈ I. This means - since
zS (ω) is continuously di�erentiable - that dzS

dω (ai) > 0 and dzS
dω (bi) < 0.

Hence, for every i ∈ I, zS (ω) must have at least one local maximum ci ∈
(ai, bi) and at least one local minimum di ∈ (bi, ai+1). At a local maximum,
dz2S
dω2 (ci) = −f ′ (ci) < 0, while at a local minimum,

dz2S
dω2 (di) = −f ′ (di) > 0. But

f is assumed to be continuously di�erentiable, and thus for every i ∈ I there
must be news wi ∈ (ci, di) such that f ′ is positive to the left of wi and negative
to the right of it. This wi is therefore a local maximum of f , and there must be
such a point in every interval (ai, ai+1). There are |I| − 1 such intervals, which
gives us |I| − 1 local maxima.

To see that another maximum of f must exist, note that zS (tS) = 0, and
also, dzS

dω (tS) = 0. This gives several possibilities. If tS ∈ (bi, ai+1) for some
i ∈ I, then it is a local maximum of zS , and there are not one but at least
two local minima in (bi, ai+1) - one to the left of tS and one to the right. So
there is one more pair of a maximum and a minimum of zS (ω), and by the
above logic, there must be a local maximum of f in addition to the ones found
in the previous paragraph. If tS ∈ (ai, bi) for some i ∈ I, then it is a local
minimum, and there are two local maxima in (ai, bi) - again, f must have an
extra local maximum. If tS = ai for some i ∈ I, then the shape of zS (ω)

implies that in some neighbourhood of ai,
dz2S
dω2 (ω) = −f ′ (ω) < 0 for ω < ai and

dz2S
dω2 (ω) = −f ′ (ω) > 0 for ω > ai. Consequently, f must have an additional
local maximum at ai. Finally, if tS = bi for some i ∈ I, then the shape of zS (ω)
implies that f must have not one but at least two local maxima in (ci, di).

Hence, if S forms part of an equilibrium, f must have at least |I| − 1 local
maxima plus one more. Therefore, m ≥ |I|�

5.6 Proof of Proposition 6.1

First statement. To prove necessity, suppose that f is not weakly increas-
ing - this implies that is is strictly decreasing on some interval [p, q]. Let

P̂ ≡
{

[p, q] , {ω}ω∈[0,1]\[p,q]

}
be a partition consisting of the interval [p, q] and

singletons. Then the di�erence in the Sender's payo� from P̂ and from the fully

revealing partition
{
{ω}ω∈[0,1]

}
equals:

v
(
P̂
)
− v

({
{ω}ω∈[0,1]

})
= F

(
t[p,q]

)
µ[p,q] −

´ q
p
F (ω) g (ω) dω =

= F [E (ω | ω ∈ [p, q])] Pr (ω ∈ [p, q])− E (F [ω] | ω ∈ [p, q]) Pr (ω ∈ [p, q]) =
= Pr (ω ∈ [p, q]) [F [E (ω | ω ∈ [p, q])]− E (F [ω] | ω ∈ [p, q])] > 0

where the last inequality sign follows from Jensen's inequality and the fact
that decreasing f implies concave F . Hence, if f is not weakly increasing, full
disclosure cannot be optimal.
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To prove su�ciency, consider a weakly increasing f . Pick an arbitrary par-
tition P̃ containing one19 positive-measure set S. Now consider a partition P ′

that di�ers from P̃ by having singletons instead of S - i.e. every ω ∈ S is a
singleton element of P̃. If f (ω) = f (tS) for all ω ∈ S, then

v
(
P̃
)
− v (P ′) = F (tS)µS −

´
ω∈S

F (ω)g(ω)dω =

=
´
ω∈S

[F (tS)− F (ω)] g(ω)dω =
´
ω∈S

f (tS) [tS − ω] g(ω)dω =

= f (tS)
´
ω∈S

[tS − ω] g(ω)dω = f (tS) [tSµS − tSµS ] = 0

On the other hand, if f (w) 6= f (tS) for some w ∈ S, then either w > tS
and f (w) > f (tS), or w < tS and f (w) < f (tS). In either case, zS (w) =´ w
tS
f (tS) − f (x) dx < 0. From Proposition 3 it follows that P̃ containing S

cannot be an optimal.
Hence, a partition containing a positive-measure set S can only be optimal

if f (ω) = f (tS) for all ω ∈ S. But every strategy that �ts this criterion yields
the same expected payo� to the Sender as the fully revealing strategy. Thus,
full disclosure must be an equilibrium strategy.

Second statement. To prove necessity, suppose, that f is not strictly in-
creasing. Then f is weakly decreasing on some interval [p, q] ⊆ [0, 1]. De�ning

P̂ ≡
{

[p, q] , {ω}ω∈[0,1]\[p,q]

}
as above and using the same reasoning, we can

prove that v
(
P̂
)
− v

({
{ω}ω∈[0,1]

})
≥ 0, so full disclosure cannot be a unique

equilibrium strategy.
To prove su�ciency, note that if f is strictly increasing, then for any partition

P containing a positive-measure set S, we have ω > tS ⇔ f (ω) > f (tS). Pick
news w ∈ S such that w > tS (such w exists as tS < max (S) ), and observe
that zS (w) =

´ w
tS
f (tS) − f (x) dx < 0. Proposition 2 then ensures that P is

not an equilibrium strategy�

5.7 Proof of Proposition 6.2

Take a strictly decreasing f , and consider a partition P. If P is fully revealing,
it cannot be optimal by Proposition 5. Now suppose P is not fully revealing,
i.e. it contains a positive-measure set S. If there exists ω /∈ S, then zS (ω) =´ ω
tS
f (tS) − f (x) dx > 0 - so P cannot be optimal. But Proposition 1 states

that an optimal partition must exist. Therefore, P = {[0, 1]} is an equilibrium,
and as such it is unique�

19Proposition 3 has already established that an optimal partition chosen will have at most
one positive-measure set.
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5.8 Proof of Proposition 7.1

From Propositions 4 and 5.1 it follows that under a unimodal density f with a
peak on (0, 1), the set S will consist of exactly one interval. Therefore, tS must
be in the interior of S. If tS ≤ k, this would mean that f is increasing on some
neighbourhood of tS , implying that zS (ω) < 0 for news in that neighborhood.
Since this neighbourhood belongs to S, by Proposition 2 this cannot hold at
an equilibrium. Thus, tS ∈ (k, 1]. Then zS (ω) > 0 for all ω > tS . Similarly,
zS (k) > 0, and zS (ω) > 0 for some ω < k. Hence, S = [a, 1] for some a ∈ [0, k)�

5.9 Proof of Proposition 7.2

From Propositions 4 and 5.1 it follows that under a unimodal density f with a
peak on (0, 1), the set S will consist of exactly one interval. Therefore, tS must
be in the interior of S. If tS ≥ k, this would mean that f is increasing on some
neighbourhood of tS , implying that zS (ω) < 0 for news in that neighborhood.
Since this neighbourhood belongs to S, by Proposition 2 this cannot hold at
an equilibrium. Thus, tS ∈ [0, k). Then zS (ω) > 0 for all ω < tS . Similarly,
zS (k) > 0, and zS (ω) > 0 for some ω > k. Hence, S = [0, b] for some b ∈ (k, 1]�
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