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Abstract. People often consume non-durable goods in a way that seems
inconsistent with preferences for smoothing consumption over time. We
suggest that such patterns of consumption can be better explained if one
takes into account the memories that consumption generates. A memorable
good, such as a honeymoon or a vacation, is a good whose mental consump-
tion outlives its physical consumption. We consider a model in which a
consumer enjoys physical consumption as well as memories. Memories are
generated only by some goods, and only when their consumption exceeds
customary levels by a sufficient margin. We offer axiomatic foundations for
the structure of the utility function and study optimal consumption in a
dynamic model. The model shows how rational consumers, taking into ac-
count their future memories, would make optimal choices that rationalize
lumpy patterns of consumption.
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Memory Utility

1 Introduction

1.1 Memory Consumption

When asked whether they would prefer an increasing intertemporal con-
sumption stream, such as (10, 12, 14), or the analogous decreasing consump-
tion stream (14, 12, 10), people commonly prefer the first. This seemingly
intuitive choice reverses the ranking given by the standard discounted sum
of stationary utilities, or

U(c0, c1, . . . , cT ) =
T∑
t=0

δtu(ct), (1)

where ct is consumption in period t, δ is the (stationary) discount factor,
and u is the (stationary) utility function, typically assumed to be concave.1

When confronted with this contrast, a person might explain that, after
having consumed at the relatively high level of 14, the medium consumption
(12) is disappointing, and the lower consumption (10) is even more disap-
pointing. By contrast, the increasing consumption stream puts one on a
positive-change track. Indeed, Kahneman and Tversky [10] have empha-
sized that people often react to changes in consumption more than to ab-
solute levels. In line with previous contributions (Helson [9] and Markowitz
[12]), they suggest that people form reference points and evaluate current
consumption relative to these reference points. This idea is consistent with
modifications of the standard model according to which the consumer is
viewed as maximizing

U(c0, c1, . . . , cT ) =
T∑
t=0

δtu(ct,Λt), (2)

where Λt designates a habituation level, aspiration level, or reference point
that is determined (at least partially) by past consumption levels (c0, c1, . . . , ct−1).

Elaborations of the standard model along the lines of (2) encounter dif-
ficulties when confronted by an example of a young couple who (not atyp-
ically) spend a quarter of their combined annual income on a wedding and
honeymoon. Such a large expenditure at the very beginning of their life as a
couple seems to violate the preference for consumption smoothing generated

1Here and in the sequel, we allow T =∞ when using this notation.
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by (1). It also runs contrary to optimal management of one’s reference point
that arises out of (2): the more spectacular the honeymoon, the bleaker will
future consumption appear in comparison.

Why do people spend large amounts of money on non-durable goods,
such as vacations, trips, celebrations, and honeymoons, contrary both to
consumption smoothing as in (1) and to optimal reference point manage-
ment as in (2)? Our view is that (1) and (2) both fail to capture the effect
of memories. When a couple gets married, they can already envisage them-
selves leafing through their wedding albums in the near future, telling their
children about their honeymoon in the more distant future, and generally
deriving pleasure from their consumption long after it has physically ended.
Indeed, the unusually large wedding expenditure is an essential ingredient
in generating the memories that the couple will enjoy later—it is important
that the festivities lie sufficiently outside their ordinary experience—and a
substantial part of the cost is typically devoted to items (including photog-
raphy and keepsakes) designed to reinforce such memories.

Combining these considerations, an individual who takes account of the
effect of current consumption on future utility has reasons to consume less
than her customary level as well as reasons to consume more. Consuming
less will nudge her customary consumption level downwards, with a positive
impact on future utility—she may prefer to get the 10 out of the way first.
At the same time, consuming more today may engender memories that will
be savored tomorrow, putting a premium on higher consumption today—the
14 may enable an experience she will treasure for years. Our goal in this
paper is to offer and examine a simple model that captures both effects.

We analyze a model of dynamic consumer choice that includes the effect
of past consumption in generating rewarding memories as well as in deter-
mining “customary” consumption levels that help set the bar for generating
more such memories in the future. Our model is a minimal extension of
the standard dynamic choice model, containing the latter as a special case.
This makes it straightforward to identify and quantify the differences in con-
sumer behavior that arise because past consumption affects future utility,
and to link these differences to the features of the model. Our model also
retains the tractability of the standard model, positioning the model for use
in applied work, as in Hai, Krueger and Postlewaite [8].

We make specific assumptions about the particular way that past con-
sumption affects future utilities. These assumptions lie behind the tractabil-
ity of our model, and it is important to understand how restrictive they are.
We accordingly provide an axiomatization of the assumed form of prefer-
ences over consumption streams that provides a foundation on which we

2



can impose functional form assumptions.
We emphasize that it is not our aim to set out a complete model of mem-

ories. There are visits to our grandparents on holidays that are especially
memorable, but that our model ignores. Rather our aim is to augment the
standard model to accommodate memories that affect economic behavior.

1.2 Relation to the Literature

The suggestion that one can get pleasure in the future from memories of the
past dates back (at least) to Adam Smith’s [15, p. 152] observation that
“We can entertain ourselves with memories of past pleasures....” The idea
that a consumer develops a notion of customary consumption that affects
her current well-being and that depends on past consumption is widespread,
and is perhaps most familiar from models of habit formation (see Attanasio
[1] for a survey). Strotz [17] was one of the first to incorporate the utility
from past consumption in a model of utility maximization, though as the
title of his classic paper on dynamic consistency suggests, consumer choice
is problematic when memory is modeled as he does.

This paper is closely related to Hai, Krueger and Postlewaite [8], who
introduce the notion of memorable goods and examine the implications of
memorable goods for evaluating the (excess) volatility of consumption. Hai,
Krueger and Postlewaite set out a model in which past consumption affects
the future through the two channels in our model. That paper provides
empirical support for the importance of memorable goods. In particular, it
shows that the excess sensitivity to foreseen income shocks in Souleles [16]
was largely due to expenditures on memorable goods. Our contribution is to
analyze a more general set of preferences that can generate memory utility
and to provide a theoretical foundation for particularly tractable such utility
functions.

2 The Model

The following four subsections develop our model. Section 2.1 introduces a
distinction between two types of goods that we will refer to as ordinary goods
and memorable goods. Section 2.2 introduces the structure that motivates
the characterization of the latter as memorable goods. Section 2.3 shows
that the resulting utility maximization problem has a solution. Section 2.4
rearranges the utility representation into a more useful form.
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2.1 Ordinary Goods and Memorable Goods

The point of departure for our model is a distinction between two types of
goods, which we refer to as an ordinary good (good 1) and a memorable
good (good 2). We consider a consumer who consumes these two goods in
each of periods t = 0, 1, 2, . . . and refer to xit ∈ R+ (i = 1, 2) as the quantity
of good i consumed in period t. Because good 2 generates memory utility,
the utility in period t depends on current consumption of good 1 but also
on all past consumption of good 2. That is, utility in period t is given by a
function

ũt(x1t, x20, . . . , x2t).

We will assume (and derive axiomatically in Section 5) a decomposition
of the function ũt as

ũt(x1t, x20, . . . , x2t) = u(x1t, x2t) + ṽt(x20, . . . , x2t), (3)

where u : R2
+ → R and ṽt : Rt+1

+ → R. It is straightforward to generalize
the analysis to the case in which good 1 is a bundle of ordinary goods and
good 2 is a bundle of memorable goods.

The intertemporal objective is the discounted sum of the functions ũ(x1t, x20, . . . , x2t)
given by (3):

T∑
t=0

δtũt(x1t, x20, . . . , x2t) =

T∑
t=0

δt [u(x1t, x2t) + ṽt(x20, . . . , x2t)] . (4)

We allow T to be finite, but will be particularly interested in the case in
which T is infinity.

The most general formulation for allowing nonseparabilities in utility
would simply presume that the agent has preferences over infinite consump-
tion streams of the form {(x10, x20), (x11, x21), . . .}. One could then apply
standard assumptions to ensure that these preferences can be represented
by a utility function defined on the space of such consumption streams.

We have built additional structure into (3)–(4). First, we assume that
preferences over intertemporal consumption streams are captured by a util-
ity function that is the discounted sum of functions ũt, each of which depends
upon only current and past consumption. Second, we split each function ũt
into two parts, one of which is a function only of current consumption,
namely u(x1t, x2t), and one of which is a function of the current and all
past consumption of good 2, namely ṽt(x20, . . . , x2t). We can think of the
function u as the counterpart of the typical utility function in a discounted-
sum-of-utilities formulation such as (1), and the function ṽt as capturing
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nonseparabilities in preferences. Notice that ṽt and hence ũt need the sub-
script t, because in different periods they will be a function of different
arguments.

The decomposition of utility of a consumption stream into a discounted
sum of instantaneous utility functions is familiar.2 The transition from a
period-t utility function defined over sequences of the form {(x10, x20), (x11, x21), . . . , (x1t, x2t)}
to the form given on the right side of (3) gives meaning to the distinction
between the two types of goods. The foundations for this distinction are
given in Section 5.

2.2 Making Memorable Goods Memorable

Without some additional structure, the intertemporal utility function given
by (4) is capable of capturing a variety of nonseparabilities in intertemporal
preferences. For example, depending on the functions involved, we might
interpret this as a familiar model of habit formation or addiction.

The role of the ordinary goods in (3)–(4) is straightforward. This section
introduces additional assumptions that allow us to interpret the utility im-
plications of memorable goods as indeed arising out of considerations having
to do with memory.

2.2.1 The Two Faces of Memory

We would like the model to focus attention on the two aspects of utility high-
lighted in Section 1. First, the previous consumption of memorable goods
{x20, . . . , x2t−1} enters the period-t utility function ṽt(x20, . . . , x2t) through
the accumulation of memories of utility produced by the past consumption
of such goods. One may enjoy fond memories of a vacation, wedding, or
special night out long after they have occurred. Second, whether the new
consumption of memorable goods produces memories that can be consumed
in the future depends on how this consumption compares to the consumer’s
customary consumption, with memories generated by extraordinary con-
sumption levels. A dinner in the type of restaurant one visits weekly is
unlikely to generate memory utility, while a rare treat in a five-star restau-
rant may contribute to utility long after the evening is finished.

2We do not offer an axiomatic derivation of this functional form. Koopmans’s [11]
axioms do not directly apply, because each x2t appears also in future instantaneous utility
values. Thus, the axioms need to be adjusted to apply to utility-equivalent bundles,
where a change in x2t is compensated by changes in future variables so that only the
instantaneous utility at period t is affected, at which point the argument follows familiar
lines.
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We capture these two forces in a parsimonious form by introducing two
state variables. We assume that

ṽt(x20, . . . , x2t) = v̂(x2t,Υt,Λt), (5)

where we interpret Υt ∈ R+ as identifying a stock of memory utility at time
t and Λt ∈ R+ as identifying the customary level of consumption of the
memory good at time t.

2.2.2 Consuming Memories

This section addresses the role of Υ in the function v̂, making assumptions
that allow us to interpret Υ as capturing the consumption of memories.

Assumption 1. There exists a function v̆ : R2
+ → R and a constant ν ∈

(0, 1) such that

ũt(x1t, x20, . . . , x2t) = u(x1t, x2t) + v̂(x2t,Υt,Λt)

= u(x1t, x2t) + Υt + v̆(x2t,Λt)

= u(x1t, x2t) +
t−1∑
τ=0

νt−τ v̆(x2τ ,Λτ ) + v̆(x2t,Λt). (6)

The first equality simply inserts (5) into (3). The second equality as-
sumes that memories of past consumption enter v̂ quasilinearly, so that we
can write the contribution of memory utility to current utility as the sum of
utilities of previously memorable consumption (given by Υt) plus the current
memory-utility generation (given by v̆(x2t,Λt)). The final equality indicates
that Υt is a discounted sum of past contributions to memory utility, or

Υt =

t−1∑
τ=0

νt−τ v̆(x2τ ,Λτ ).

2.2.3 Producing Memories

This section addresses the role of Λ in the function v̂, in the process de-
scribing the generation of memory utility. We first assume that goods 1
and 2 are indeed “goods,” in the sense that increased consumption increases
current utility. In addition, we assume that the consumption of x2 gener-
ates memory utility, in the form of a value v̆t(x2t,Λt) > 0, if but only if
the consumption x2t is sufficiently large relative to the customary level of
consumption of good 2.
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Assumption 2.
[2.1] The function u is strictly increasing.
[2.2] The function v̆ is increasing in x2 and decreasing in Λ, and is

strictly increasing in x2 and strictly decreasing in Λ whenever v̆(x2,Λ) > 0.
[2.3] There exists γ > 1 such that x2 ≤ γΛ =⇒ v̆1(x2,Λ) = 0.
[2.4] The customary consumption level Λt evolves according to, for λ ∈

[0, 1],
Λt = λΛt−1 + (1− λ)x2t−1.

Assumption [2.4] indicates that memory utility is generated whenever the
consumption of the memorable good is sufficiently larger than the customary
level. Assumption [2.4] indicates that the customary level of memory-good
consumption drifts in the direction of current consumption.

2.3 Existence of Optimal Consumption Plans

This section introduces the budget constraint and establishes that an opti-
mal consumption plan exists.

We assume that the consumer has income I in each period, and that
the rate at which she can borrow and save is equal to her discount factor,
δ. Goods 1 and 2 are measured in units such that their prices are each 1,
allowing us to write the consumer’s intertemporal budget constraint as

∞∑
t=0

δt(I − x1t − x2t) = 0.

Let Yt denote the largest expenditure the consumer can make in period
t, given that she can borrow any future income and spend any saved income,
but has already paid for her previous consumption. Hence, we have

Y0 =
I

1− δ

and

Yt = [Yt−1 − x1t−1 − x2t−1]
1

δ
.

The intertemporal budget constraint implies that Yt ≥ 0. Any expenditure
larger than Yt−1 in period t − 1 is impossible, being sufficiently large that
the consumer’s savings and discounted future income would not suffice to
pay for it, which in turn ensures Yt ≥ 0. There is an upper bound Y t
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which the consumer achieves by spending nothing on consumption in periods
{0, . . . , t− 1}, given by

Y t =
I

δt
+

I

δt−1 + . . .+
I

δ2 +
I

δ
+

I

1− δ
=

I

δt(1− δ)
.

We thus have Yt ∈ [0, Y t]. Notice that Y t grows arbitrarily large as does t.
The consumer’s objective is then to maximize

∞∑
t=0

δt [u(x1t, x2t) + Υt + v̆τ (x2t,Λt)] (7)

s.t. Yt+1 = [Yt − x1t − x2t]
1

δ
≥ 0 (8)

Υt = ν(Υt−1 + v̆(x2t−1,Λt−1)) (9)

Λt = λΛt−1 + (1− λ)x2t−1 (10)

(x1t, x2t) ∈ X2, (11)

given initial values (Y0,Λ0), whereX2 is the set of feasible values of (x1t, x2t).
The following standard assumptions about constituent utility functions

u and v̆ suffice to ensure that optimal consumption plans exist. Weaker
assumptions would suffice–for example, differentiability is not essential, but
it is convenient.

Assumption 3.
[3.1] The function u is continuously differentiable. The function v̆ is

continuously differentiable when it is positive.
[3.2] For all sequences {xτ}∞τ=0 with either limτ→∞ x1τ =∞ or limτ→∞ x2τ =

∞, either it is the case that limτ→∞
du(x1τ ,x2τ )

dx1τ
= 0 or it is the case that

limτ→∞
du(x1τ ,x2τ )

dx2τ
= 0.

[3.3] For all sequences {xτ}∞τ=0 with limτ→∞ x2τ =∞, we have limτ→∞
dv̆(x2τ ,Λ)
dx2τ

=
0 uniformly in Λ.

Assumption 3.1 imposes familiar smoothness conditions. Assumptions
3.2–3.3 impose versions of diminishing marginal utility assumptions. As-
sumption 3.2 indicates that arbitrarily large values of consumption ensure
that at least one of the marginal utilities of u is arbitrarily small, and the
final assumption imposes a similar requirement for the function v̂. The uni-
form convergence requirement in Assumption 3.3 may appear to be quite

stringent. However, we will typically think of d2v̂(x2τ ,Λτ )
dx2τdΛt

≤ 0. It will then
suffice for the condition in Assumption 3.3 to hold when Λ = 0.

The consumer’s intertemporal maximization problem has a solution:
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Proposition 1. Let Assumptions 1–3 hold. Then there exists an optimal
consumption plan x∗ : R3

+ → R2
+, identifying values of (x1t, x2t) in each

period t as a function of (Yt,Υt,Λt). Moreover, there exists a continuous
value function V : R3

+ → R such that the maximization problem can be
written as

V (Yt,Υt,Λt) = max
x1t,x2t

u(x1t, x2t) + Υt + v̆(x2t,Λt) + δV (Yt+1,Υt+1,Λt+1)

subject to the constraints given in (8)–(11), given initial values (Y0,Υ0,Λ0).

Given its additive from in (6), the variable Υ affects the value of V , but not
the optimal continuation strategy.

This proposition would be immediate from Assumptions 3.1 and 3.2 if
the consumption set X were compact (e.g., Sundaram [18, Theorem 12.19]).
The proof of Proposition 1 is then completed by the following lemma.

Lemma 2. Let Assumption 3 hold. Then there exists a finite x such that
any consumption plan featuring a period t in which xit > x for either i = 1, 2
is dominated by a consumption plan in which xit ≤ x for i = 1, 2 and for all
t.

The proof, contained in Section 7.1, first notes that the consumer’s
marginal utilities in the first period are bounded below, even if the con-
sumer concentrates all of her consumption in the first period. We then
use Assumptions 3.2–3.3 to argue that any unbounded consumption plan
must eventually feature a marginal utility smaller than the bound from the
first period. The consumer can then increase utility by shifting consump-
tion to the first period, ensuring that the plan in question is not optimal.
The intertemporal links created by memorable goods introduce only slight
complications in this otherwise quite familiar line of argument.

2.4 Simplifications

This section introduces three simplifications. We are interested in cases
in which one would expect consumption to be smoothed. We accordingly
assume:

Assumption 4. The utility function u is strictly concave. The utility func-
tion v̆ is strictly concave in x2 on that part of its domain in which it is
positive.

The following assumption is invoked for Proposition 4 below, but is not
necessary for the results prior to that:
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Assumption 5. The functions u and v̆ are homogeneous of degree α < 1.

The final simplification is purely a matter of notation. It is helpful to
rearrange the intertemporal objective as follows:

∞∑
t=0

δt

[
u(x1t, x2t) +

t−1∑
τ=0

νt−τ v̆(x2τ ,Λτ ) + v̆τ (x2t,Λt)

]

=
∞∑
t=0

δtu(x1t, x2t) +
∞∑
t=0

δt
t∑

τ=0

νt−τ v̆(x2τ ,Λτ )

=
∞∑
t=0

δtu(x1t, x2t) +
∞∑
τ=0

∞∑
t=τ

δtνt−τ v̆(x2τ ,Λτ )

=

∞∑
t=0

δtu(x1t, x2t) +

∞∑
τ=0

δτ
1

1− δν
v̆(x2τ ,Λτ )

=
∞∑
t=0

δtu(x1t, x2t) +
∞∑
τ=0

δτv(x2τ ,Λτ )

=

∞∑
t=0

δt [u(x1t, x2t) + v(x2t,Λt)] .

The first expression is taken from (7). The first equality distributes the
initial summation. The next equality interchanges the order of summation
in the double sum. The next equality then simplifies the second sum in the
double sum. The following equality introduces the function v = 1

1−δν v̆. The
final equality collects the terms in a single summation.

This formulation has the advantage of focussing attention on the peri-
ods in which memory utility is generated, while clearing from view (but not
neglecting) the subsequent enjoyment of those memories. The function v is
proportional to v̆, and hence inherits the properties of v̆ given in Assump-
tions 3–5.

3 A Two-Period Example

Let T = 1, so there are two periods, numbered 0 and 1. The agent’s objective
is

max
x10,x20,x11,x21

{u(x10, x20) + v̂(x20,Λ0) + δ [u(x11, x21) + νv̂(x20,Λ0) + v̂(x21,Λ1)]} ,
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subject to the budget constraint

x10 + x20 + δ(x11 + x21) = Y0,

where Y0 is the discounted present value of the agent’s income and we main-
tain our assumption that goods 1 and 2 are measured in such units that
their prices are each 1.

We make the example more concrete by assuming

u(x1, x2) =
xα1
α

+
xα2
α

v(x2,Λ) = ξmax

{
0,
xα2
α
− γΛα

α

}
for ξ > 0 and γ > 1. The functions u and v are homogeneous of degree
α (and hence satisfy Assumption 4). We assume α ∈ (0, 1), with α < 1
ensuring that the functions are concave, and α > 0 ensuring that utilities
are nonnegative and hence 0 is a relevant comparison for the maximum in
the specification of v.

We use two variations of this model to illustrate two aspects of memory
utility.

3.1 No Acclimatization

First, we let Λ1(x20) = Λ0 for all x20. This corresponds to setting λ = 1 in
our specification of the dynamics governing Λ. In this case, the customary
level of memorable-good consumption is fixed for this consumer, and does
not respond to her consumption path, allowing us to focus on the consump-
tion of memories.

We consider three types of consumption plans. In the first, the consumer
generates no memory utility. The consumer’s utility is then given by

xα10

α
+
xα20

α
+ δ

[
xα11

α
+
xα21

α

]
.

The first-order conditions for utility maximization give xα−1
10 = xα−1

20 =
xα−1

11 = xα−1
21 , and we can solve for

x10 = x20 = x11 = x21 =
Y0

2 + 2δ
.

Let V (Y0) be the indirect utility function, given the constraint that the con-
sumer never generates memory utility and holding Λ0 fixed. The envelope
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theorem then gives3

dV

dY0
=

(
Y0

2 + 2δ

)α−1

.

Notice that V (Y0) is concave.
In the second consumption plan, the consumer generates memory utility

in only a single period. It is immediate that the consumer will do so in
period 0. It is here that we see implications of the durability of memory.
Given that the customary level of memorable-good consumption is fixed,
and given that memories are to be generated in only one period, then that
period will be the first, so as to take advantage of lingering memories in the
second period. The consumer’s utility is then

xα10

α
+
xα20

α
+

(
xα20

α
− γΛα0

α

)
ξ(1 + δν) + δ

[
xα11

α
+
xα21

α

]
.

The first-order conditions for utility maximization give xα−1
10 = xα−1

20 [1 + ξ+
ξνδ] = xα−1

11 = xα−1
21 , and we can solve for

x10 = x11 = x21 =
θY0

θ(1 + 2δ) + 1

x20 =
Y0

θ(1 + 2δ) + 1
,

where
θ = [1 + ξ + ξνδ]

1
α−1 ∈ (0, 1).

Compared to the previous case, the generation of memory utility in period 0
prompts an increase in x20, because the generation of memories increases the
marginal utility of x20, and a corresponding decrease in all other variables
so as to preserve the budget constraint. Let V (Y0) be the indirect utility
function given the constraint that the consumer generate memory utility in
period 0 (only). The envelope theorem then gives4

dV

dY0
=

(
θY0

θ(1 + 2δ) + 1

)α−1

.

3The domain of this indirect utility function is restricted to income levels Y0 sufficiently
small that no memory utility is generated when consumption is perfectly smooth.

4The domain of this indirect utility function is restricted to income levels Y0 sufficiently
large that income utility can be generated in the first period, but not so large that the con-
sumption bundle solving the resulting first-order conditions would also generate memory
utility in the second period.
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Notice that V (Y0) is concave and is more steeply sloped than V .
Now suppose that the consumer generates memory utility in both peri-

ods. The consumer’s utility is then

xα10

α
+
xα20

α
+

(
xα20

α
− γΛα0

α

)
ξ(1 + δν) + δ

[
xα11

α
+
xα21

α
+

(
xα21

α
− γΛα0

α

)
ξ

]
.

The first-order conditions for utility maximization give xα−1
10 = xα−1

20 [1 + ξ+
ξνδ] = xα−1

11 = xα−1
21 (1 + ξ), and we can solve for

x10 = x11 =
θφY0

(1 + δ)θφ+ φ+ δθ

x20 =
φY0

(1 + δ)θφ+ φ+ δθ

x21 =
θY0

(1 + δ)θφ+ φ+ δθ

where θ is as before and

φ = [1 + ξ]
1

α−1 ∈ (0, 1).

Compared to the previous case, the generation of memory utility in period
0 prompts an additional decrease in x10 = x11, since the generation of
memories in both periods increases yet further the marginal utility gains
from doing so. Let V (Y0) be the indirect utility function given the constraint
that the consumer generate memory utility in both periods. The envelope
theorem then gives5

dV

dY0
=

(
θφY0

(1 + δ)θφ+ φ+ δθ

)α−1

.

Notice that V (Y0) is concave and is more steeply sloped than V .
Figure 1 illustrates the indirect utility functions for this example.

3.2 Rapid Acclimatization

Now we examine the case in which λ = 0, and so Λ1 = x20. Hence, the first-
period consumption of the memorable good sets the second-period custom-
ary level. The consumer’s acclimatization to past consumption of memorable

5The domain of this indirect utility function is restricted to income levels Y0 sufficiently
large that it is possible to generate memory utility in both periods.
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V(Y0) 

V(Y0) 

 

2γ− 1/αΛ0 

V(Y0) 

γ− 1/αΛ0 

Indirect  
utility 

Present value  
of Income, Y0  

Figure 1: Indirect utility functions for the first specification of the example,
featuring no acclimatization. The three indirect utility functions correspond
to the case in which no memory utility is generated (V ), memory utility is
generated only in the first period (V ), and memory utility is generated in
both periods (V ).

goods is thus immediate, allowing us to focus on the role of the customary
level in the production of memories.

Suppose first that the consumer achieves no memory utility. The con-
sumer’s utility is then

xα10

α
+
xα20

α
+ δ

[
xα11

α
+
xα21

α

]
.

Acclimatization is irrelevant in this case, and as in Section 3.1, the first
order conditions imply xα−1

10 = xα−1
20 = xα−1

11 = xα−1
21 .

Suppose next that the consumer generates memory utility only in the
second period. Unlike the previous case of no acclimatization, it may be
optimal to generate memory utility only in the second period. In particular,
if the initial customary level Λ0 is quite large, generating memory utility in
period 0 will require x20 to be prohibitively large. The consumer may fare
better to choose a small value of x20 and then exploit the resulting smaller
value of Λ1 to generate memory utility in period 1. The utility level is then

xα10

α
+
xα20

α
+ δ

[
xα11

α
+
xα21

α
+ ξ

(
xα20

α
− γ x

α
21

α

)]
.
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The first-order conditions imply xα−1
10 = (1−δξγ)xα−1

20 = xα−1
11 = (1+ξ)xα−1

21 .
We can now observe that neither of the payoffs involved in these two

consumption plans depends on the level Λ0, and hence which of these two
consumption plans gives a higher payoff is independent of the state variables
(Y0,Λ0).6 If choosing between these two plans, the results will be:

• No memory utility if γ is large, ξ small and α small.

• Second-period memory utility if γ is small, ξ large, and α large.

Perhaps the only comparative static that is not obvious here is that con-
cerning α. In order to achieve memory utility in the second period, the
consumer decreases x20 and increases x21. This distortion is relatively less
costly as α is large.

Now consider another comparison, that between memory utility in the
first period only and memory utility in both periods. When achieving mem-
ory utility only in the first period, the consumer’s utility is

xα10

α
+
xα20

α
+

(
xα20

α
− γΛα0

α

)
ξ(1 + δν) + δ

[
xα11

α
+
xα21

α

]
,

and the first-order conditions give xα−1
10 = (1+ξ+ξδν)xα−1

20 = xα−1
11 = xα−1

21 .
When achieving memory utility in both periods, the consumer’s utility is

xα10

α
+
xα20

α
+

(
xα20

α
− γΛα0

α

)
ξ(1 + δν) + δ

[
xα11

α
+
xα21

α

]
+ δξ

(
xα20

α
− γ x

α
20

α

)
and the first-order conditions give xα−1

10 = (1+ξ+ξδν−δξγ)xα−1
20 = xα−1

11 =
(1 + ξ)xα−1

21 . We now notice that the comparison between these two payoffs
does not depend on Λ0, which appears additively in each expression, and
does not depend on Y0. We will have:

• Memory utility only in the first period if γ is large and α small.

• Memory utility on both periods if γ is small and α large.

We thus have a number of potential special cases, depending on param-
eters. Let us consider the case in which γ is small and α large. Then the

6It is obvious that Λ0 does not affect this comparison. The homogeneity of the utility
function ensures that if a consumption plan generating no memory utility (for example) is
optimal for a given level Y0, then a scaled version of this plan is optimal at any alternative
level Y ′0 .
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consumer will either generate memory utility only in the second period or
will generate memory utility in both periods, depending on (Y0,Λ0). For
relatively small values of Λ0 (or, equivalently, large values of Y0), the con-
sumer will generate memory utility in both periods. For larger values of Λ0

(smaller values of Y0), the consumer will generate memory utility only in pe-
riod 2. Delaying memory utility until period 2 has the obvious disadvantage
that there is one fewer periods to enjoy the memory. It has the advantage
that the customary level can be decreased in order to make the generation
of memories more effective. This advantage is more pronounced the larger
is Λ0 and the smaller is Y0.

When memory utility is generated only in the second period, we can
solve the first-order conditions to obtain

x10 = x11 =
θφY0

(1 + δ)θφ+ φ+ δθ

x20 =
φY0

(1 + δ)θφ+ φ+ δθ

x21 =
θY0

(1 + δ)θφ+ φ+ δθ

where

θ = [1− δξγ]
1

α−1 ∈ (0, 1)

φ = [1 + ξ]
1

α−1 ∈ (0, 1).

When memory utility is generated in both periods, we have

x10 = x11 =
θφY0

(1 + δ)θφ+ φ+ δθ

x20 =
φY0

(1 + δ)θφ+ φ+ δθ

x21 =
θY0

(1 + δ)θφ+ φ+ δθ

where

θ = [1 + ξ + δξν − δξγ]
1

α−1 ∈ (0, 1)

φ = [1 + ξ]
1

α−1 ∈ (0, 1).

A comparison shows that the x10 and x11 are smaller when memory
utility is generated only in the second period (when Λ0 is large and Y0 is
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Figure 2: Indirect utility functions for the second specification in the exam-
ple, featuring immediate acclimatization. The two indirect utility functions
correspond to the case of memory utility only in the second period (V ) and
memory utility in both periods (V ).

small) than in the case when memory utility is generated in both periods
(when Λ0 is small Y0 is large). Hence, by familiar arguments, the indirect
utility function V (y0) for the case of memory utility only in the second
period is steeper than the indirect utility function V (Y0) for the case of
memory utility in both periods. We can represent the combined indirect
utility function in Figure 2.

Notice that this function has the concave-convex-concave shape sug-
gested by Friedman and Savage [7]. As Friedman and Savage [7] note, a
consumer characterized by such utility functions might appear to be both
risk averse and risk loving, in the sense that there are both insurance policies
and lotteries that the consumer would find attractive. However, Figure 1
shows that each potentially optimal configuration of memory utility gener-
ation potentially gives rise to another hump in the utility function. When
there are many periods there will be many such plans, and hence the result-
ing utility function may look quite unlike that presented in Friedman and
Savage [7]. We return to this comparison in Section 4.2.
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4 Characterization of Optimal Consumption Plans

We now turn to a characterization of optimal consumption plans in the
presence of memorable goods. We are particularly interested in the abil-
ity of memory utility to account for seemingly excessive lumpiness in con-
sumption. We accordingly consider a case in which consumption would be
perfectly smoothed in the absence of memory utility. In particular, a con-
ventional utility-maximization model without memory utility will generate
perfect consumption smoothing if either the horizon is finite and determin-
istic, or it is random with a stationary continuation probability.

The two-period example presented in Section 3 demonstrates why we
cannot expect perfect consumption smoothing in the presence of memory
utility and a finite, deterministic lifetime. The reasoning is straightforward.
Memory utility generated in the first period of a two-period model is enjoyed
in both periods, while memory utility generated in the final period can
necessarily be enjoyed only in that period. This provides a natural tendency
to front-load consumption and hence memory utility. It is then no surprise
that young people spend a relatively larger share of their income on weddings
than do senior citizens. This section accordingly focuses attention on the
infinite-horizon model, interpreted as a model with a random lifetime and
stationary continuation probabilities.

4.1 Benchmark: Memoryless Consumption

To provide a comparison, let us recall the familiar special case in which there
is no memory utility. We assume that the relevant parts of Assumptions 3–4
hold, so that u is differentiable, increasing and concave.

The consumer’s problem is

max
{x1t,x2t}∞t=0

∞∑
t=0

δtu(x1t, x2t)

s.t.

∞∑
τ=0

δt(x1t + x2t) = Y0.

The first-order conditions for this maximization problem call for the marginal
utilities to be equalized across goods and across periods. The concavity of
u then ensures that we have perfect consumption smoothing. There exist
quantities x∗1 and x∗2 with x∗1 + x∗2 = I such that x1t = x∗1 and x2t = x∗2 for
all t.
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4.2 No Acclimatization

We first consider a special case, namely that in which λ = 1, so that there
is no acclimatization. This case is particularly easy to characterize—either
the consumer will perfectly smooth consumption, or the consumer’s indirect
utility function will be effectively linear. In the latter case, consumption may
not be perfectly smoothed, but this lack of smoothing is inconsequential.
The path of consumption will be drawn from a set of optimal consumption
paths, with the linearity of the indirect utility function ensuring that all such
plans have equivalent utilities. These results show that the tendency of the
customary consumption level to drift toward actual consumption plays an
essential role in the link between memory utility and lumpy consumption.

Suppose that the customary level of consumption is perfectly persistent,
so that Λt = Λ for all t, regardless of history. The utility function is constant
across periods in this case, and is given by

u(x1, x2)

when x2 ≤ γΛ and is given by

u(x2, x2) + v(x2,Λ)

when x2 ≥ γΛ. Let ct be the total amount spent on consumption in period t.
Then we can define single-period indirect utility functions w(c) for the case in
which no memory utility is generated in the period in question and w(c) for
the case in which memory utility is generated. Given the stationarity of Λ,
we can write these solely as a function of c. In particular, no intertemporal
considerations are involved in deriving these functions. We illustrate the
indirect utility functions in Figure 3. Let w(c) = max{w(c), w(c)}. We can
use these indirect utility functions to characterize the optimal consumption
plan in this case.

Let ŵ be the smallest concave function larger than w(c). Then ŵ is given
by the upper envelope of the utility functions w, w and the dashed tangent
in Figure 3, and c and c are the points of intersection of the tangent and
the functions w and w.

Our strategy is now as follows. We derive the optimal consumption
plan for the function ŵ. This is relatively straightforward, since we have a
utility function that is fixed across periods and concave. The details of this
plan will depend on the level of income. For each level of income, we have
an optimal consumption plan and an induced sequence of utilities, given
utility function ŵ. We then show that either the original induced sequence
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Figure 3: Indirect utility functions for the case of perfectly persistent mem-
ory. Expenditure on consumption within a period is denoted by c, and w(c)
and wc) denote the maximal utility in that period given that memory utility
is not (w) or is (w) generated.

of utilities, or in some cases a different but feasible sequence, gives the same
total (discounted) utility under utility function w. This ensures that the
resulting plan is optimal for w.

The first observation is that since ŵ is concave, it is always optimal to
equalize consumption across periods. Let

ĉ

1− δ
= Y0.

Then ĉ is the unique consumption level consistent with the consumer’s in-
come and consuming the same amount in each period. This now leads to
three cases.

If ĉ ≤ c, then consuming ĉ in each period under utility function w gives
w(ĉ) = ŵ(ĉ), and hence we have an optimal consumption plan for utility w.
In this case, the consumer’s income is too low to make it worth ever securing
memory utility. The fixed customary level Λ ensures that, even though the
consumer never generates memory utility, the customary level never falls to
a point that would make memory utility worthwhile.

If ĉ ≥ c, then consuming ĉ in each period under utility function w gives
w(ĉ) = ŵ(ĉ), and hence we have an optimal consumption plan for utility w.
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In this case, the consumer’s income is sufficiently large that the consumer
generates memory utility in every period, with the customary level Λ never
increasing as a result.

Suppose ĉ ∈ (c, c). Now we do not have w(ĉ) = ŵ(ĉ), since ŵ(ĉ) falls on
the line segment that “concavifies” w. However, this line segment is linear.
As a result, we can replace the sequence that consumes ĉ in every period
with a sequence that consumes c in some periods and c in others. The latter
is feasible, and we argue that when this sequence is evaluated with the utility
function w, it gives the same discounted utility sum as does the constant
sequence ĉ evaluated under the utility function ŵ. As we have argued, this
suffices for the result.

In particular, given two periods t and t′ > t, the consumer is indifferent
over pairs (ct, ct′) that satisfies c ≤ ct, ct′ ≤ c and ct + δt

′−tct′ = ĉ(1 + δt
′−t).

This in turn means that the consumer is indifferent over variations in ct and
c′t that satisfy

dct′

dct
= − 1

δt
′−t ,

which is precisely the rate at which these two can be traded off in order to
preserve feasibility. This in turn implies that any feasible consumption plan
that features only c and c is optimal—when this sequence is evaluated with
the utility function w, it gives the same discounted utility sum as does the
constant sequence ĉ evaluated under the utility function ŵ. At one extreme
in the collection of such sequences is a plan that first consumes only c, until
switching to the perpetual consumption of c. This is a consumer who first
binges on memory consumption, and then forsakes it entirely. At the other
extreme is a plan that first consumes only c, until switching to the perpetual
consumption of c. This is a consumer who delays gratification. We have thus
established the following:

Proposition 3. Let Assumptions 1–4 hold, and let λ = 1, so that the level
of customary memorable-good consumption shows no acclimatization. Then
either

(i) the consumer never generates memory utility (if Y0 is sufficiently small);

(ii) the consumer always generates memory utility (if Y0 is sufficiently
large); or

(iii) there will exist expenditure levels c < c such that any consumption plan
that satisfies the budget constraint and exhibits only the consumption
levels c and c is optimal.
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The third case includes an infinite number of consumption plans that dis-
tribute c and c seemingly arbitrarily across periods, with the only constraint
being that the resulting consumption plan exhausts the consumer’s budget.

The utility functions shown in Figure 3 exhibit the concave-convex-
concave shape discussed by Friedman and Savage. If we assumed that the
consumer uses the same function w for utility maximization under risk, then
we would apparently have an explanation for the simultaneous purchases of
insurance and lotteries. However, in the presence of an infinite horizon, this
consumer would have no interest in buying a lottery. No fair (or worse than
fair) lottery can offer the consumer the possibility of memory consumption
on terms better than the consumer can achieve by shifting consumption
across periods. The infinite horizon is important in this argument, and
distinguishes this argument from that of Section 3.

More generally, the link between convex utility functions and a willing-
ness to gamble rests on some “friction” in the consumer’s ability to transfer
consumption across periods. One such friction is a finite lifetime, appearing
in Friedman and Savage [7] in the form of a single-period horizon.

4.3 Acclimatization

We now turn to the case λ ∈ [0, 1), so that acclimatization occurs, includ-
ing the special case of λ = 0, or immediate acclimatization. We maintain
Assumptions 1–5 throughout.

We first argue that memory utility is not in general a transient phe-
nomenon. This section establishes conditions under which the consumer
avails herself of memory utility infinitely often.

Let x∗1(Y0) and x∗2(Y0) be the consumption quantities that would be
optimal, in period 0 and every subsequent period, if we assumed that the
function v is identically equal to zero. The stock Λ is irrelevant in this case,
and these quantities can be written solely as a function of Y0. As we have
noted in Section 4.1, these quantities will be constant across time periods,
and so no time subscripts are needed. We are of course interested in the case
in which v is nonzero, and x∗1(Y0) and x∗2(Y0) will be useful for the analysis
of this case.

Definition 1. We say that memory utility is felicitous if, when Λ0 = x∗2(Y0),
the optimal consumption plan calls for the generation of memory utility at
least once, and yields a utility strictly higher than never generating memory
utility.

The interpretation of the condition that Λ0 = x∗2(Y0) is that the consumer’s
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initial customary level of consumption of the memorable good matches the
level of consumption that would be relevant if memories were never gen-
erated. Memory utility is felicitous if, in this circumstance, the consumer
would find it optimal to at least sometimes generate memory utility.

Assumption 5 requires that the functions u and v̆ be homogeneous of de-
gree α < 1. Nothing to this point needed this assumption, but we use it in
what follows. An implication is that if {x∗1t, x∗2t}∞t=0 is an optimal consump-
tion plan given (Y0,Λ0), then {αx∗1t, αx∗2t}∞t=0 is an optimal consumption
plan given (αY0, αΛ0) for any α > 0. Hence, the question of whether mem-
ory utility if felicitous does not depend on Y0, ensuring that the property of
felicity is well defined.

It is less obvious that felicity is a useful concept, since it is defined in
terms of endogenous objects. However, we can easily find (less insightful)
conditions on primitives ensuring that memory utility if felicitous. For ex-
ample, let {vn} be a sequence of functions, satisfying the properties placed
on v by Assumptions 3–5, and suppose that the sequence is pointwise in-
creasing and pointwise unbounded for any argument (x2,Λ0) with x2 > Λ0.7

Then there exists a value N such that for all n ≥ N , letting v = vn ensures
that memory utility is felicitous. Hence, memory utility is felicitous if the
technology for generating memory utility is sufficiently productive.

We can then show that if memory utility is felicitous, not only does an
optimal consumption plan exhibit memory utility, but it does so infinitely
often:

Proposition 4. Let λ ∈ [0, 1), let Assumptions 1–5 hold, and let memory
utility be felicitous. Then in an optimal consumption plan, memory utility
is generated infinitely often.

The proof, in Section 7.2, begins by supposing that memory utility is
generated at most finitely many times. After the last generation of mem-
ory utility, the problem of maximizing the continuation utility is equivalent
to the memoryless utility maximization problem considered in Section 4.1.
Then, we note that the continuation consumption plan must exhibit the con-
sumption of some bundle (x∗1, x

∗
2) in every period, and hence limt→∞ Λt = x∗2.

But then the homogeneity imposed by Assumption 5 ensures that the op-
timal continuation consumption plan must be proportional to the original
plan, which combines with the assumption that memory utility is felicitous
to ensure that memory utility is once again generated.

7Notice that along the sequence {vn}, the factor γ determining the extent to which the
consumption of memory must exceed the customary level in order to generate memory
utility is shrinking.
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In the setting of Section 4.2, with no acclimatization, the initial custom-
ary level Λ0 plays a key role in determining whether the optimal consumption
plan exhibits the generation of memories. The optimal consumption plan
calls for the generation of memories if Λ0 is sufficiently small and does not
if Λ0 is sufficiently large. In the current setting, the initial level Λ0 plays no
role in determining whether memory utility is felicitous, and hence plays no
role in determining whether optimal consumption plans exhibit the gener-
ation of memories. Notice that if memory utility is not felicitous, then the
optimal consumption plan will exhibit the generation of memories if Λ0 is
sufficiently small, but need not do so infinitely often.

On the other side, and once again in contrast to the case of no acclima-
tization, even if memories are sometimes optimally generated, they are not
generated in every period:

Proposition 5. Let λ ∈ [0, 1) and let Assumptions 1–5 hold. Then for every
T , there exists a period t > T in which memory utility is not generated.

The proof is straightforward, and so we offer only a sketch of the argu-
ment. If memory utility is generated in period t, we have

Λt+1 = λΛt + (1− λ)x2t

≥ λΛt + (1− λ)γΛt

= [λ+ (1− λ)γ]Λt.

Hence, if there exists a time after which memory utility is generated in
every period, then the customary level Λt must grow without bound (since
λ + (1 − λ)γ > 1), as must the consumption level x2t. We have already
seen, as the essential Lemma used in proving Proposition 1, that optimal
consumption plans are bounded.

Paired with Proposition 4, this result indicates that an optimal consump-
tion plan must generate memory utility infinitely often, but must intersperse
this generation with periods in which no memory utility is generated. A key
feature of the latter is that they allow the customary level to decline to
the point that memory utility can again be generated. Consumption thus
switches back and forth between periods in which memory utility is gener-
ated and periods in which the customary level of memorable good consump-
tion is allowed to decline.

We can say something about the intervals in which memory utility is not
generated. Section 7.3 proves:

Proposition 6. Let λ ∈ [0, 1) and let Assumptions 1–5 hold. Suppose
that the optimal consumption plan generates memory utility in period t′ and
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t′′ > t′, but not in the intervening periods. Then over the course of the
periods (t′ + 1, . . . t′′ − 1), the marginal utility of good 1 remains constant,
while the marginal utility of good 2 increases.

It is a standard result that as long as δ > 0, the marginal utility of
good 1 is optimally equalized across periods. If not, the discounted sum of
utilities could be increased by shifting the consumption of good 1 from low-
marginal-utility to high-marginal-utility periods. Much the same intuition
holds for good 2. In this case, however, the relevant marginal utility con-
siderations involve not only the immediate marginal utility in the period of
consumption, but also the marginal effect on the customary level of good-2
consumption in each future period in which memory utility is generated.
Indeed, the optimality conditions for good 2 trade off the immediate utility-
enhancing effects of increased consumption against the utility-decreasing
effects of higher future customary levels. The difference between periods t
and t + 1 (with t′ < t < t + 1 < t′′) is that in the case of the latter, these
future impacts on customary levels are stronger and closer. This makes it all
the more important to attenuate these future effects in period t+ 1, leading
to a higher marginal utility.

These forces are especially convenient to illustrate when the switching
back and forth between periods in which memory utility is generated and
intervals with such generation induces a perfect cycle.8 Such a cycle is
characterized by a number n, with memory utility being generated every
n periods. Let a sequence of such periods be numbered 1, 2, . . . , n with
memory utility generated in period 1. Then we can let the consumption
levels in these n periods be denoted by ((x11, x12), . . . , (x1n, x2n)). Then
there exists a wealth level Y , intuitively giving the current discounted value
of expenditures over the n periods beginning with memory utility generation,
and a level of customary consumption Λ, giving the customary consumption
at the beginning of each period in which memory utility is generated, such

8The indivisibilities created by finite periods lengths can preclude such cycles, though
examples of such particulary tractable equilibria are readily constructed.
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that the optimal consumption plan must satisfy:

max
((x11,x21),...,(x1n,x2n))

u(x11, x21) + v(x21,Λ1) + δu(x12, x22) + . . .+ δn−1u(x1n, x2n)

s.t. Y = x11 + x21 + δ(x12 + x22) + δ2(x13 + x23) + . . .+ δn−1(x1n + x2n)

Λ = λnΛ + λn−1(1− λ)x21 + λn−2(1− λ)x22 +

. . .+ λ(1− λ)x2n−1 + (1− λ)x2n.

This maximization problem says nothing about what determines n, Y and Λ,
but nonetheless the optimal stationary policy must solve this maximization
problem.

Letting ζ be the multiplier on the first constraint and ψ the multiplier
on the second, we can formulate the first-order conditions as

u1(x11, x21) + ζ = 0

u1(x12, x22) + ζ = 0

...

u1(x1n−1, x2n−1) + ζ = 0

u1(x1n, x2n) + ζ = 0

and

u2(x11, x21) + v2(x21,Λ1) + ζ + ψλn−1(1− λ) = 0

u2(x12, x22) + ζ + ψλn−2δ−1(1− λ) = 0

...

u2(x1n−1, x2n−1) + ζ + ψλδ−(n−2)(1− λ) = 0

u2(x1n, x2n) + ζ + ψδ−(n−1)(1− λ) = 0.

The marginal utility of good 1 is equalized across periods. This reflects
a standard consumption-smoothing argument. The marginal utility of good
2 increases as the next bout of memory utility draws near. Reducing the
consumption of good 2 reduces the customary level against which the next
instance of memory utility is measured. The closer is the next instance of
memory utility, the more valuable is this reduction, and hence the larger the
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marginal utility of good 2. This gives us a consumption pattern for good
2 that peaks with the generation of memory utility, then takes a drop, and
then declines until the next generation of memory utility.

If the utility function exhibits a positive cross partial derivative, then the
consumption pattern for memory goods will spill over into a similarly cyclic
behavior for the consumption of good 1. Hence, memory utility can induce
cycles in the consumption of goods that are inherently nonmemorable.

5 Foundations

A key feature of our model is that past consumption can affect utility
through acclimatization and memory. This calls for a model in which the
utility function at time t depend not only on current values of the products,
x1t and x2t, but also on their past values. However, such a function allows
for a wide variety of history-dependent utility functions. In order to focus
on the effects that are of interest to us, we suggested the instantaneous util-
ity function given in (3), which is the sum of two functions. One function
depends only on the goods consumed at present, x1t and x2t, capturing the
standard, non-memory-related utility, and the other function depends only
on past and current values of x2, capturing the effects of acclimatization and
memory.

It is not entirely clear what we assume by this functional form. According
to the classical notion of separability the utility function is the sum of two
(or more) functions, each of which has a disjoint set of variables. But what
is assumed by a summation of two functions whose sets of variables are not
disjoint? Clearly, not every function can be so written. Yet, such functions
do not satisfy the conditions of separability.

The purpose of this section if to axiomatize a functional form as in (3).
Axioms on presumably observed preferences (interpreted as the instanta-
neous preferences at time t) that imply that such a decomposition of the
utility function is possible would clarify what is assumed by the model. In
this case, we couple standard requirements of weak order, continuity and
nontriviality with an axiom called cross-consistency, directing attention to
the latter as capturing our departure from standard models. The axioma-
tization may in turn facilitate further analysis and testing of the model, as
it may be easier to design and conduct empirical or experimental exercises
that focus on this axiom than taking on the entire memory utility package
at once. Finally, we believe that, when interpreting x2 as the memory-
generating good, the axioms we impose are quite plausible, supporting our
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belief that the functional form is neither too peculiar nor ad hoc.
Our result applies to more general set-ups, and axiomatizes quasi-separable

utility functions, defined as utility functions that can be written as the sum
of two functions, each of which depends on a proper subset of the variables,
where these subsets are not disjoint.

5.1 The Setting

Let X,Y, Z be convex subsets of Euclidean spaces. Denote their product by

A = X × Y × Z

and endow it with the product topology. We are interested in binary rela-
tions %⊂ A×A that can be represented by maximization of a function

f (x, y, z)

that can be written as

f (x, y, z) = u (x, y) + v (y, z)

where
u : X × Y → R

and
v : Y × Z → R

are continuous, non-constant functions.
In the memory-good application, X is the bundle of ordinary goods; Y is

the bundle of memory goods consumed at present; and Z consists of bundles
of memory goods consumed in the past (or the corresponding levels of Υt

and Λt defined by them). Clearly, the same structure can be used for other
applications as well.

5.2 The Axioms

For a binary relation %⊂ A×A (with A = X×Y ×Z) we state the following
axioms:

A1. Weak order: % is complete and transitive.
A2. Continuity: For every a ∈ A, the sets {b ∈ A | b � a}, {b ∈ A | a � b}

are open.
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A3. Cross-Consistency: For every y0, y1 ∈ Y , every x1, x2, x3, x4 ∈
X, and every z1, z2, z3, z4 ∈ Z, if

(x1, y0, z1) % (x3, y1, z3)

(x2, y0, z1) - (x3, y1, z4)

(x1, y0, z2) - (x4, y1, z3)

then
(x2, y0, z2) - (x4, y1, z4)

A4. Essentiality: For every y ∈ Y , there exist x1, x2 ∈ X and z ∈ Z
such that (x1, y, z) � (x2, y, z) and there exist x ∈ X and z1, z2 ∈ Z such
that (x, y, z1) � (x, y, z2).

These axioms are both obvious and intuitive, with the exception of Cross-
Consistency. To understand the meaning of Cross-Consistency, consider first
the pair of preferences

(x1, y0, z1) % (x3, y1, z3)

(x2, y0, z1) - (x3, y1, z4) .

For the sake of the argument, imagine that preferences are monotonic in all
coordinates, that x2 is better than x1, and that z4 is better than z3. On
the left side, x1 was replaced by x2. On the right side, z3 was replaced by
z4. As a result, the right side, which used to be not as highly ranked as the
left side, became at least as good as the (modified) left side. This means,
intuitively, that the difference in utility between z4 and z3 (at the level y1)
is at least as high as the difference in utility between x2 and x1 (at the level
y0).

Next consider the pair

(x1, y0, z1) % (x3, y1, z3)

(x1, y0, z2) - (x4, y1, z3) .

Again, to understand the intuition, assume that z2 is better than z1 and
the same holds for x4 and x3. By similar reasoning, the difference in utility
between x4 and x3 (at the level y1) is at least as high as the difference in
utility between z2 and z1 (at the level y0).

Finally, consider the first and the last comparisons:

(x1, y0, z1) % (x3, y1, z3)
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and
(x2, y0, z2)??? (x4, y1, z4)

On the left side we observe two improvements: x1 was replaced by x2 and
z1 was replaced by z2. However, there are also two improvements on the
hand side: x3 was replaced by x4 and z3 was replaced by z4. Moreover, the
left side improvement occur at the level y = y0 and those on the right side
occurred at the level y = y1. But these are precisely the levels of y for which
we have some information from the first two comparisons. And since we
know that the z3-z4 improvement (at y1) beats the x1-x2 improvement (at
y0) and that the x3-x4 improvement (at y1) beats the z1-z2 improvement
(at y0), we expect that the addition of the (respective) former will beat the
addition of the (respective) latter, that is, that (x2, y0, z2) - (x4, y1, z4).

We thus find Cross-Consistency a reasonably compelling property. Sec-
tion 7.4 exploits this line of argument to achieve a rather straightforward
demonstration that Cross-Consistency is necessary for our representation.
The main point of Proposition 7 is that with the additional mild assumptions
imposed by the other axioms, Cross-Consistency is also sufficient for the rep-
resentation. These additional assumptions are that % is a continuous weak
order—which is necessarily the case for any continuous representation—and
that % satisfies a certain sensitivity assumption, so that, given any value of
y, neither of the other variables will be immaterial. (We comment on the
importance of this assumption in the course of the proof.)

Remark 1. One may consider a weaker version of Cross-Consistency that
is restricted to a single y level, that is, a version that requires y0 = y1. As
will be clear from the proof, such a version implies Debreu’s [6] “Double
Cancellation” axiom and is the basic driving force behind additive separa-
bility at each level of y. It is not hard to see, however, that such a weaker
version would not suffice for our purposes. For example, assume that x, y, z
are positive real variables, and that % is defined by maximization of

f (x, y, z) = y log (x+ z) .

Clearly, at each level of y preferences are defined by maximization of log (x+ z)
or, equivalently, of x+ z and are therefore separable. Yet, it is not hard to
see that such preferences cannot be represented by u (x, y) + v (y, z) over
the entire space, as they will not satisfy the necessary condition of Cross-
Consistency.

5.3 A Representation Result

Section 7.4 proves:
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Proposition 7. The relation %⊂ A×A satisfies A1-A4 if and only if there
are continuous functions

u : X × Y → R
v : Y × Z → R

such that % is represented by

f(x, y, z) = u (x, y) + v (y, z)

and such that, for each y ∈ Y , neither u (·, y) nor v (y, ·) is a constant.
Furthermore, in this case u and v are unique in the following sense: u′ and
v′ also satisfy the representation above iff there are α > 0, a continuous
function β : Y → R, and γ ∈ R such that

u′ (x, y) = αu (x, y) + β (y)

v′ (y, z) = αv (y, z)− β (y) + γ.

When interpreting this representation result in the context of memory
utility, one may take the elements of Z to be vectors of past consumption,
so that preferences are represented by the function

u(x1t, x2t) + ṽt(x20, . . . , x2t).

The specific assumptions we impose on ṽt, namely, the way that it de-
pends on x20, . . . , x2(t−1) only through Υt,Λt, are then function form as-
sumptions. We could seek axiomatic foundations for this functional form,
but do not expect such an axiomatization to add significantly to our under-
standing of the model.

6 Discussion

6.1 Related Models

6.1.1 Memorable Goods vs. Durable Goods

Memory utility shares many of the properties of a durable good, but there
are also some important differences. Most notably, models of durable good
consumption typically contain no counterpart of one of our key characteris-
tics of memory utility, the customary level of consumption. In the standard
model, an expenditure on a durable good generates a stream of benefits that
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are independent of past expenditures. The flow of benefits from the pur-
chase of a sixty inch flat screen television is the same whether this is the first
television one ever owned or whether it is a replacement of the previous sixty
inch flat screen television that failed last week. In contrast, an expenditure
on the memorable good generates valuable memories only if the expenditure
is sufficiently above the customary level. A consumer who plans to spend
a large amount on the memorable good next period might be better off if
her consumption this period decreased, something not possible with durable
goods.

6.1.2 Indivisibilities

One might be concerned that the patterns we associate with memory utility
simply reflect indivisibilities in consumption goods. There may be a spike
in consumption because there is a minimum amount one has to spend on a
wedding, or carnival costume, or vacation. We notice, however, that people
spend a wide range of sums on (for example) weddings or vacations, and that
these sums appear to be correlated with the income levels or consumption
patterns of the purchasers. This is what we would expect of an memory-
utility explanation, but not a indivisibility explanation.

6.1.3 Addiction

The presence of the stock Λt in our memory utility specification prompts a
comparison to models of addiction, with Becker and Murphy [2] being the
obvious comparison. In their model, the utility function in period t is given
by

u(yt, ct,Λt),

where yt is the consumption of a nonaddictive good, ct is the consumption of
an addictive good, and Λt is the stock of the addictive good. The stock Λt is
allowed to enter the utility function with either a positive or negative sign,
so that an increased stock of consumption may decrease utility (perhaps
with something like smoking) or increase utility (perhaps with something
like exercise). In addition, the cross derivative ucA may be either positive or
negative, so that an increased stock may either enhance or attenuate the urge
for current consumption. The primary difference is that the function u in the
addiction model as assumed to be concave. This allows a straightforward
optimization in each period, and contrasts with the nonconvexities that
appear in our case.
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6.1.4 Habit Formation

We incorporated the dependence of period t utility by adding to the utility
from instantaneous utility of the expenditure in period t a function ṽt that
depends on past expenditures,

ṽt(x20, . . . , x2t) = v̂(x20,Υt,Λt),

where we interpret Υt ∈ R+ as identifying a stock of memories at time t and
Λt ∈ R+ as identifying the customary level of consumption of the memory
good at time t. If we eliminate Υ from the model, then the effect of past
consumption on the immediate utility from expenditure on the memorable
good x2t depends only on Λt. There then exist simple specifications for the
evolution of Λ for which the model becomes a model of habit formation.
Thus, our model nests a habit formation model (as well as, obviously, the
standard model).

6.2 Applications of a Memory Utility Model

6.2.1 Permanent Income Hypothesis

The standard intertemporal consumption model suggests that optimal con-
sumption should be smooth. In particular, expected but temporary jumps
in income have little effect on permanent income, and so should have little
effect on consumption. For example, expected tax refund receipts should
lead to little immediate increase in consumption. In contrast, Souleles [16]
documents that there is excess sensitivity of consumption to such refunds.

Hai, Krueger and Postlewaite [8] demonstrate that if the model in Soule-
les is extended along the lines of our model, there is essentially no excess
sensitivity. Much of what appears to be a puzzling current consumption
binge in response to temporary income shocks can be interpreted as the
generation of memory utility, which in turn generates a relatively smooth
intertemporal pattern of increases in utility.

6.2.2 Retirement Saving

It is a familiar lament in the popular press that Americans save too little for
retirement (see, for example, the opening quotation in Scholz, Seshadri and
Khitatrakun [14]). The conclusions of more careful analyses are less clear.
Scholz, Seshadri and Khitatrakun [14], for example, argue that only about
twenty percent of Americans are undersaving, and even then not by vast
amounts.
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Our analysis of memorable goods brings a new dimension to this dis-
cussion, and a new reason to suspect that reports of undersaving may be
overstated. The flow of utility in retirement years includes the flow of utility
from earlier memorable consumption. Decreasing consumption expenditures
as one moves into and through retirement, often taken as a sign of under-
saving, may simply reflect the optimal management of memory utility. This
suggests a number of empirical projects. For example, with sufficient data,
one could look for a correlation between early expenditure on memorable
goods and decreases in expenditure later in life that our model would sug-
gest.

6.2.3 Memories as a Substitute for Saving

Taking account of memorable goods in a consumer’s utility maximization
problem changes how we think about saving and investment in general.
Separate from the question of retirement savings, economists have puzzled
over why the savings rate in the U.S. has dropped substantially over the
past half century (e.g., Parker [13]). The decrease in the savings rate is
sometimes interpreted as an indication that consumers care less about the
future than they once did. However, over the period in which savings rates
decreased, expenditures on vacations increased, providing a hint of a link
between the generation of memory utility and savings.

A consumer who shifts expenditure from nonmemorable goods to memo-
rable goods is doing something akin to saving—making current choices that
increase her future utility. Any estimate of intertemporal preferences from
longitudinal consumption that ignores the memory component of nondurable
consumption will result in an upward bias of the consumer’s discount rate.
There is evidence that recreation is a luxury good (though perhaps becom-
ing less so; see Costa [4]). If memory goods more generally are luxury goods,
then estimates of discount factors may become more problematic for higher
incomes. It would be interesting to revisit estimates of discount factors with
an empirical strategy incorporating memorable goods.

6.2.4 Memorable Goods and Risk Aversion

Ignoring the memory component of consumption will complicate estimates
of risk aversion as well as estimates of discount rates. We discussed above
the Friedman-Savage anomaly of agents who both gamble and insure. If one
accepts our model of memory utility, a nonconvexity arises naturally, and
the insurance-and-gambling behavior is less surprising. Section 4.3 showed
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that a consumer who understands the (possibly large) memory utility that
accompanies a big increase in consumption may optimally reduce decrease
current consumption for some time so as to be able to afford the memorable
event. For our infinitely lived consumer, this intertemporal substitution is
a sufficiently powerful tool for managing memory utility as to obviate the
need to take on risk. However, a real-world finitely-lived consumer might
realize that she will not live long enough to acquire the resources needed
to generate a large burst of memory utility. A fair (or even mildly unfair)
lottery with a large upside possibility may be part of an optimal plan for
such a consumer.

6.3 Extensions

We touch here on one of the many possible extensions of our model. We
have laid out the model in which higher-than-customary consumption leads
to memory utility that is added to the direct contemporaneous utility from
consumption. This captures well the positive memories that stem from high
expenditures, but the basic ideas can be extended to cover negative memories
as well. Most of us have at some time stayed at hotels that are memorable,
but not in a positive way. If we were advising a friend on choosing a hotel
for his honeymoon we would suggest paying a premium to be sure that the
hotel didn’t fall below expectations, since if the experience is negative it
won’t soon be forgotten.

Accommodating negative memories would be straightforward. The func-
tion v aggregates the flow of utility stemming from memorable experiences
that is then added on to the direct utility from consumption. One can allow
the function to take on negative values for unpleasant experiences, which
then have an ongoing drag on my future utility. As with the positive mem-
ory formation that we have modeled, the natural way to proceed would be
to say that if the expenditure on the memorable good falls sufficiently below
the customary level, negative memories are formed.

7 Appendix: Proofs

7.1 Proof of Lemma 2

We first note that in any equilibrium, we have (x10, x20) ∈ [0, Y0]2. This

implies that there is a lower bound ε on du(x10,x20)
dx10

, the marginal utility of
good 1 in the first period.
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Next, we note that there is an x̂ ≥ 0 such that for any consumption
(x1, x2) with either x1 > x̂ or x2 > x̂, it must be that either du(x1,x2)

dx1
< ε/2

or it is the case that du(x1,x2)
dx2

< ε/2. If this is not the case, then we can find
a sequence (x1τ , x2τ ) contradicting Assumption 3.3.

The next step is to note that there exists a value x̆ such that if x2 > x̆,
then dv̆(x2,Λ)

dx2
< ε

2(1− δ) for any Λ (where we see later in the proof why the
(1−δ) is needed to cope with the durability of memory utility). This follows
from Assumption 3.4.

Let x = max{x̂, x̆}.
Now suppose we have a candidate equilibrium in which, for some t, we

have consumption bundle (x1t, x2t) with x1t > x or x2t > x. We argue that
there exists a superior consumption plan in which consumption is unchanged
in all periods except 0 and t, and in which consumption of each good in
periods 0 and t falls short of x. Iterating this argument yields the result.

In period t, the derivative of u with respect to either good 1 or good 2
must fall short of ε/2. If it is the derivative with respect to good 1 that has
this property, then we have

u1(x10, x20)− u1(x1t, x2t) > 0. (12)

Now consider an alternative strategy that duplicates that of the candidate
equilibrium strategy with the possibly exception of x10 and x1t. The latter
two variables are allowed to vary as long as they satisfy the budget con-
straint. The budget constraint in turn requires

x10 + δtx1t = k

for some constant k. This allows us to define an implicit function x1t =
f(x10) whose derivative is given by −δ−t. This allows us to interpret (12)
as the derivative of the discounted sum of utility with respect to xi0, under
the constraint that x1t = f(xi0), ensuring the budget constraint is satisfied.
The fact that this derivative is positive ensures that we can increase utility
by decreasing x1t and increasing x10.

Now suppose that it is good 2 for which the derivative is small in period
t. Then

u1(x10, x20)− δt
[
u2(x1t, x2t) +

∞∑
τ=t

δτ−tv̆1(x2t,Λt)

]
=

u1(x10, x20)− δt
[
u2(x1t, x2t) +

1

1 + δ
v̆1(x2t,Λt)

]
> 0.
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Our choice of the period t ensures the inequality in the second line. More-
over, it is clear from the first line that this sum is an upper bound on the
derivative of the discounted sum of utility with respect to x10, under the
constraint that x2t = f(x10). (In particular, it captures the effect of varying
x10 on first-period utility, and then the effect of varying x2t on utility in pe-
riod t and every subsequent period. It is only an upper bound, because the
derivative reduced by the effect of x2t on values of Λτ for values τ > t, which
we have not incorporated in our calculation.) The fact that this derivative
is positive again ensures that we can increase utility by decreasing x2t and
increasing x10.

This allows us to construct a sequence of improvements that continues
until x1t and x2t each are no larger than x for all t, yielding the result.

7.2 Proof of Proposition 4

Let {x̂1t, x̂2t}∞t=0 be the optimal consumption plan. By assumption this plan
involves the generation of memory utility in some period, though we cannot
be sure of which period. An alternative consumption plan is to never secure
memory utility, in which case the optimal plan would be {(x∗1, x∗2), (x∗1, x

∗
2), . . .}.

We assume that at least one generation of memory utility is strictly optimal,
giving

{x̂1t, x̂2t}∞t=0 � ((x∗1, x
∗
2), (x∗1, x

∗
2), . . .). (13)

The optimal consumption plan induces a sequence of stocks {Λ̂t}∞t=0 and
wealths {Ŷt}∞t=0.

Suppose the optimal plan involved the generation of memory utility only
finitely many times. Then there is a period T such that the consumer enters
period T + 1 with wealth YT+1, and thereafter consumes(

x∗1
YT
Y0
, x∗2

YT
Y0

)
in each period. As a result, the stock Λt becomes arbitrarily close to x∗2

YT
Y0

.

It then suffices to show that if a period t′ arrives in which Λt′ = x∗2
YT
Y0

, then

the consumer will indulge in memory utility on some subsequent period.9

To see that this is the case, notice that once such a t′ has arrived, the

9We can only be assured that Λt′ can be made arbitrarily close to x∗2
YT
Y0

, not precisely
equal to it, but the fact that our original preference is strict allows us to look at the case
where they are equal.
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continuation sequences{
x̂1t

YT
Y0

}∞
t=0

,

{
x̂2t

YT
Y0

}∞
t=0

,

{
Λ̂t
YT
Y0

}∞
t=0

,

{
Ŷt
YT
Y0

}∞
t=0

are feasible and, by definition, involves the generation of some memory util-
ity. We then need only argue that({

x̂1t
YT
Y0

}∞
t=0

,

{
x̂2t

YT
Y0

}∞
t=0

)
�
((

x̂∗1
YT
Y0
, x̂∗2

YT
Y0

)
,

(
x̂∗1
YT
Y0
, x̂∗2

YT
Y0

)
, . . .

)
.

But this follows from (13) and the homogeneity invoked in Assumption 5.

7.3 Proof of Proposition 6

Fix an optimal consumption plan, and let no memory utility be generated
in periods t and t + 1. Let the periods after t + 1 in which memory utility
is generated be {tτ}∞τ=0. Then the derivative of the period-t continuation
discounted sum of utility with respect to x2t is given by

u2(x1t, x2t) + δτ0−t
∞∑
k=0

δτk−τ0v2(x2τk ,Λτk)
dΛτk
dx2t

,

while the corresponding derivative with respect to x2t+1 is given by

u2(x1t+1, x2t+1) + δτ0−(t+1)
∞∑
k=0

δτk−τ0v2(x2τk ,Λτk)
dΛτk
dx2t+1

.

In each case the first term captures the immediate effect of consuming good
2 on current consumption, and the summation captures the effect on the
future customary levels of consumption, which come into play each time
memory utility is generated. We can rewrite these derivatives as

u2(x1t, x2t) + δτ0−t
∞∑
k=0

δτk−τ0v2(x2τk ,Λτk)(1− λ)λτk−t−1,

and

u2(x1t+1, x2t+1) + δτ0−(t+1)
∞∑
k=0

δτk−τ0v2(x2τk ,Λτk)(1− λ)λτk−(t+1)−1.

The necessary conditions for utility maximization are that these two deriva-
tives be equal. Noting that v2 < 0, this gives

u2(x1t, x2t) < u2(x1t+1, x2t+1).
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7.4 Proof of Proposition 7

7.4.1 Necessity

Assume that u (x, y) + v (y, z) represents %. A1 and A2 follow immediately.
As for A3, assume that

(x1, y0, z1) % (x3, y1, z3)

(x2, y0, z1) - (x3, y1, z4)

(x1, y0, z2) - (x4, y1, z3) .

The first preference statement implies

u (x1, y0) + v (y0, z1) ≥ u (x3, y1) + v (y1, z3) ,

or, equivalently,

−u (x1, y0)− v (y0, z1) ≤ −u (x3, y1)− v (y1, z3) ,

while the other two yield

u (x2, y0) + v (y0, z1) ≤ u (x3, y1) + v (y1, z4)

u (x1, y0) + v (y0, z2) ≤ u (x4, y1) + v (y1, z3) .

Summing up the last three inequalities we obtain

u (x2, y0) + v (y0, z2) ≤ u (x4, y1) + v (y1, z4)

which implies
(x2, y0, z2) - (x4, y1, z4) .

Finally, observe that A4 holds provided that u (·, y) and v (y, ·) are not
constant for any y.

7.4.2 Sufficiency – Part I: Construction

In this subsection we construct u, v such that u (x, y) + v (y, z) represents
preferences. We will fix x0 ∈ X and construct these functions so that

u (x0, y) = 0 ∀y ∈ Y.

This will prove useful in showing that the functions so constructed are con-
tinuous (in Part II), as well as in proving the uniqueness result.
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Step 0: Preliminaries: Cross Consistency has a natural counterpart,
with the direction of all preference signs reversed:

Reverse Cross Consistency: For every y0, y1 ∈ Y , every x1, x2, x3, x4 ∈
X, and every z1, z2, z3, z4 ∈ Z, if

(x1, y0, z1) - (x3, y1, z3)

(x2, y0, z1) % (x3, y1, z4)

(x1, y0, z2) % (x4, y1, z3)

then
(x2, y0, z2) % (x4, y1, z4) .

Note that the two conditions are equivalent. (To see this, it suffices
to exchange the notation between y0 ↔ y1, x1 ↔ x3, x2 ↔ x4, z1 ↔ z3,
z2 ↔ z4.)

Similarly, one can have the indifference version of the axiom:

Indifference Cross Consistency: For every y0, y1 ∈ Y , every x1, x2, x3, x4 ∈
X, and every z1, z2, z3, z4 ∈ Z, if

(x1, y0, z1) ∼ (x3, y1, z3)

(x2, y0, z1) ∼ (x3, y1, z4)

(x1, y0, z2) ∼ (x4, y1, z3)

then
(x2, y0, z2) ∼ (x4, y1, z4) .

This version follows from the conjunction of Cross Consistency and Re-
verse Cross Consistency, and hence from each of these alone.

Step 1: Additive representation for any fixed y: For y ∈ Y , define

Ay = {(x, y, z) ∈ A |x ∈ X, z ∈ Z } .

Restricting attention to Ay, for each y ∈ Y , we note that % is a contin-
uous weak order (basically, on X × Z). For a relation % on X × Z we will
be interested in following condition:10

10See also Blaschke [3] and Thomsen [19] for the related “hexagon” condition.
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Double Cancellation: For every f, g, h ∈ X and every p, r, q ∈ Z, if

(f, p) % (g, q)

and
(h, p) - (g, r)

then
(h, q) - (f, r) .

In particular, the following lemma states that % on Ay satisfies Double
Cancellation.

Lemma 8. For each y ∈ Y , every f, g, h ∈ X and every p, r, q ∈ Z, if

(f, y, p) % (g, y, q)

and
(h, y, p) - (g, y, r)

then
(h, y, q) - (f, y, r) .

Proof : Given f, g, h ∈ X and p, r, q ∈ Z that satisfy (f, y, p) % (g, y, q),
and (h, y, p) - (g, y, r), define (i)

y0 = y1 = y

(ii)

x1 = x4 = f

x2 = h x3 = g

and (iii)

z1 = p

z2 = z3 = q

z4 = r.

Observe that

(x1, y0, z1) = (f, y, p) % (g, y, q) = (x3, y1, z3)

(x2, y0, z1) = (h, y, p) - (g, y, r) = (x3, y1, z4)
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and clearly also

(x1, y0, z2) = (f, y, q) ∼ (f, y, q) = (x4, y1, z3)

hence Cross Consistency can be invoked to conclude that

(x2, y0, z2) - (x4, y1, z4)

which means

(x2, y0, z2) = (h, y, q) - (f, y, r) = (x4, y1, z4) .

Thus, Double Cancellation on each Ay follows from Cross Consistency.
It follows from Debreu [6] that % has an additively separable continuous
representation: there are continuous uy : X → R and vy : Z → R such that,
for every x, x′ ∈ X and every z, z′ ∈ Z,

(x, y, z) %
(
x′, y, z′

)
iff

uy (x) + vy (z) ≥ uy
(
x′
)

+ vy
(
z′
)
.

Further, thanks to A4, these uy, vy are unique up to multiplication by
a positive constant and the addition of a constant.11 In other words, if
u′y : X → R and v′y : Z → R also represent % on Ay as above, there must
be αy > 0 and βyu, βyv ∈ R such that

u′y (x) = αyuy (x) + βyu

and
v′y (z) = αyvy (z) + βyv.

Finally, by setting βyu = −αyuy (x0) we may assume without loss of
generality that uy (x0) = 0.

11If one of the two variables x.z does not affect preferences on Ay, its function is a
constant—hence unique up to a cardinal transformation, but the representation of the
other variable becomes only ordinal. Similarly, If A4 doesn’t hold, one of the two functions
might be an non-continuous monotone transformation of a continuous function.
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Step 2: Additive representation on the entire space: For each y,
choose two continuous functions uy : X → R and vy : Z → R that represent
% on Ay as above, with uy (x0) = 0. Recall that these functions are unique
up to multiplication (of both) by (the same) αy > 0 and an addition of
a constant to vy. We now wish to show that we may take such an affine
transformation of uy, vy for each y ∈ Y so that the resulting functions rank
alternatives as does % also across different values of y, (that is, for any two
alternatives a ∈ Ay, b ∈ Ay′ even if y 6= y′) and that these functions are
continuous (over all of A).

For a generic a ∈ A, let aX ∈ X, aY ∈ Y , and aZ ∈ Z be its components,
so that (aX , aY , aZ) = a.

To visualize the construction, consider, for each y ∈ Y , the image of the
functions uy, vy. Define

I (y) = {(uy (x) , vy (z)) |x ∈ X, z ∈ Z } ⊂ R2.

Note that, because uy, vy are continuous functions on convex subsets of
Euclidean spaces, their images of these functions are convex. That is

Iu (y) ≡ {uy (x) |x ∈ X } ⊂ R
Iv (y) ≡ {vy (z) |z ∈ Z } ⊂ R

are (potentially infinite) intervals in R, and I (y) = Iu (y)× Iv (y).
We may imagine indifference curves in I (y), which are downward sloping

straight lines with slope −1.
We define y, y′ ∈ Y to be close if there exist x, x′ ∈ X and z, z′ ∈ Z such

that (x, y, z) ∼ (x′, y′, z′) while (uy (x) , vy (z)) is in the interior of I (y) and(
uy′ (x

′) , vy′ (z
′)
)

is in the interior of I (y′).
Because % is known to be a continuous weak order on all of A, it can

be represented by a continuous function W : A → R (see Debreu [5]).
Restricting attention to Ay for any y ∈ Y , W is an increasing monotone
transformation of uy + vy. The function W will allow us to simplify the
notation in some of the following arguments, though it doesn’t serve any
particular role and, clearly, anything stated in the language of W can also
be stated in the language of %.

Observe that, for any y ∈ Y , W (Ay) is a (potentially infinite) interval
in R with a nonempty interior (due to A4). Moreover, if y, y′ ∈ Y are close,
then W (Ay) ∩W

(
Ay′
)

is also a (potentially infinite) interval in R with a
nonempty interior.
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Lemma 9. Assume that y, y′ ∈ Y are close. Then there are unique αy′ > 0
and βy′ ∈ R such that, by defining

u (x, y) = uy (x) ; u
(
x, y′

)
= αy′uy′ (x)

and
v (y, z) = vy (z) ; v

(
y′, z

)
= αy′vy′ (z) + βy′

we obtain u and v such that u (x, y) + v (y, z) represents % on Ay ∪Ay′.

Thus, the lemma states that we can fix the arbitrarily chosen uy, vy for
one value, y, and choose an affine positive transformation of the functions
for the other, y′, and thus obtain a function that represents preferences not
only within each subspace Ay, Ay′ but also across them.

Proof : Let y, y′ ∈ Y be close. Denote by I◦ the interior of W (Ay) ∩
W
(
Ay′
)

which is known to be a nonempty (potentially infinite) interval in
R. Clearly, for any αy′ > 0 and βuy′ , β

v
y′ ∈ R

u (x, y) = uy (x) ; u
(
x, y′

)
= αy′uy′ (x) + βuy′

and
v (y, z) = vy (z) ; v

(
y′, z

)
= αy′vy′ (z) + βvy′

would result in a function u (x, y) + v (y, z) that represents % on Ay as well
as on Ay′ . We need to make sure that such a function correctly represents
% between a ∈ Ay and b ∈ Ay′ . To this end, we first focus on the W -inverse
images of I◦, that is on

Ây ≡ { a ∈ Ay |W (a) ∈ I◦ }
Ây′ ≡

{
b ∈ Ay′ |W (b) ∈ I◦

}
.

Consider a value ξ = uy′ (x
′) + vy′ (z

′) ∈ R for some (x′, y′, z′) ∈ Ây′ .

We claim that there exists a unique η ∈ R such that, for any (x, y, z) ∈ Ây,
(x, y, z) ∼ (x′, y′, z′) if and only if uy (x) + vy (z) = η. Indeed, this follows
from the fact that uy (x) + vy (z) represents % on Ay, uy′ (x

′) + vy′ (z
′) –

on Ay′ , and from transitivity. Hence there exists a function g : R→ R such
that (x, y, z) ∼ (x′, y′, z′) if and only if

uy (x) + vy (z) = g
(
uy′
(
x′
)

+ vy′
(
z′
))
.

Further, by transitivity, g is increasing (and strictly increasing in the relevant
domain) and

(x, y, z) %
(
x′, y′, z′

)
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iff
uy (x) + vy (z) ≥ g

(
uy′
(
x′
)

+ vy′
(
z′
))
.

We wish to show that g is affine on the relevant domain, that is on
uy′ (x

′) + vy′ (z
′) where W ((x′, y′, z′)) ∈ I◦. To this end, consider three

equally-spaced points in its domain,

ξ, ξ + δ, ξ + 2δ.

We wish to show that the values of g for these points are also equally spaced,
that is, that

g (ξ + 2δ)− g (ξ + δ) = g (ξ + δ)− g (δ) .

Choose x1, x2 ∈ X, z1, z2 ∈ Z such that

uy′ (x1) + vy′ (z1) = ξ

uy′ (x2) + vy′ (z1) = ξ + δ

uy′ (x1) + vy′ (z2) = ξ + δ.

Note that such a selection is possible since there are points in Ay′ with
uy′ (x) + vy′ (z) = ξ + 2δ. (Note that the selection of x1, x2, z1, z2 should be
done simultaneously: there may be points x1, z1 close to the boundary of
Ay′ for which such an x2 or such a z2 will not exist.)

Similarly, denote
η = g (ξ)

ε = g (ξ + δ)− g (δ) > 0

and choose x3, x4 ∈ X, z3, z4 ∈ Z such that

uy (x3) + vy (z3) = η

uy (x4) + vy (z3) = η + ε

uy (x3) + vy (z4) = η + ε.

Clearly, we have (
x1, y

′, z1

)
∼ (x3, y, z3)(

x2, y
′, z1

)
∼ (x3, y, z4)(

x1, y
′, z2

)
∼ (x4, y, z3) .

By Indifference Cross Consistency, we also have(
x2, y

′, z2

)
∼ (x4, y, z4)
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which implies
g (ξ + 2δ) = η + 2ε.

Thus g is affine on the relevant domain, and there are αy′ > 0 and
βy′ ∈ R such that

uy (x) + vy (z) = g
(
uy′
(
x′
)

+ vy′
(
z′
))

= αy′uy′
(
x′
)

+ αy′vy′
(
z′
)

+ βy′

whenever (x, y, z) ∼ (x′, y′, z′).
Observe that in defining u and v we have some freedom in deciding how to

split βy′ between them. In fact, for any βuy′ , β
v
y′ ∈ R such that βuy′+β

v
y′ = βy′

we can define

u (x, y) = uy (x) ; u
(
x, y′

)
= αy′uy′ (x) + βuy′

and
v (y, z) = vy (z) ; v

(
y′, z

)
= αy′vy′ (z) + βvy′

and observe that u (x, y) + v (y, z) represents % for any a ∈ Ây and b ∈ Ây′ .
However, to stick to the normalization by which u (x0, ·) = 0, we choose
βuy′ = 0 (recall that uy (x0) = uy′ (x0) = 0) and βvy′ = βy′ .

Next consider a ∈ Ay\Ây. If there exists b ∈ Ay′ such that a ∼ b
(which might be possible if a and or b are %-maximal or %-minimal in
their sub-spaces, Ay or Ay′ , respectively), the proof continues as above, via
transitivity. We are therefore left with the case that a � Ay′ or a ≺ Ay′

(using the obvious notation for a relation between an element and every
element of a set). But in this case one can choose c ∈ Ây and complete the
proof by transitivity. (For example, for b ∈ Ây′ one chooses c ∼ b and argues
that a � c ∼ b occurs when u (x, y) + v (y, z) obtains a higher value for a
than both c and b; otherwise we may have [a � Ay′ and b - Ay] or [a ≺ Ay′
and b % A] etc.)

For y ∈ Y , let

C (y) =
{
y′ ∈ Y

∣∣ y and y′ are close
}

Lemma 10. For every y ∈ Y there exist

u : X × C (y)→ R
v : C (y)× Z → R

such that u (x, y) + v (y, z) represents % on
⋃
y′∈C(y)Ay′.
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This lemma states that we can have the desired representation not only
for every pair of subspaces Ay, Ay′ where y′ is close to y, but also for all of
these simultaneously (holding y fixed).

Proof : Let there be given y ∈ Y . For every y′ ∈ C (y) define u (x, y′) +
v (y′, z) as in the Lemma 9.

Consider a, b ∈
⋃
y′∈C(y)Ay′ . If a, b ∈ Ay′ for some y′ the proof is

complete. This is also the case if one of them is in Ay. We are therefore left
with the case that

a ∈ Ay′\Ay b ∈ Ay′′\Ay.

In this case we know that both a and b are either “above” all of Ay or
“below” it. (That is, a � Ay or a ≺ Ay and the same is true of b.) In case
a � Ay � b or b � Ay � a, transitivity completes the proof. Hence, we
are interested in the case a, b � Ay or, symmetrically, a, b ≺ Ay. Without
loss of generality assume that a, b � Ay. Since y′ and y′′ are both close to
y and they both contain alternatives that are better than Ay, they have to
be close to each other. In fact, there has to be a nonempty interior of

W (Ay) ∩W
(
Ay′
)
∩W

(
Ay′′

)
.

Consider two real number in this interior, α < β, and six alternatives
c, c′, d, d′, e.e′ such that c, c′ ∈ Ay, d, d

′ ∈ Ay′ , e, e
′ ∈ Ay′′ and W (c) =

W (d) = W (e) = α and W (c′) = W (d′) = W (e′) = β. By Lemma 9,
u (·, y′) and v (y′, ·) are affine transformations of uy′ (·) and vy′ (·), respec-
tively, and u (·, y′′) and v (y′′, ·) are affine transformations of uy′′ (·) and
vy′′ (·). However, the equalities above imply that, if we start with u (·, y′)
and v (y′, ·) and use Lemma 9 for y′ and y′′, we will end up with u (·, y′′) and
v (y′′, ·). Hence, u (x, y)+v (y, z) represent preferences also on Ay′ ∪Ay′′ and
correctly rank a and b.

Lemma 11. Let there be given y1, y2, ..., yn ∈ Y such that yi is close to yi+1

for i = 1, ..., n− 1. Let

C =
⋃
i≤n

C (y) .

There exist

u : X × C → R
v : C × Z → R

such that u (x, y) + v (y, z) represents % on
⋃
y′∈C Ay′.
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Proof : The proof is by induction on n, with the case n = 1 established
by Lemma 10. Assume, then, that the claim is true for n and consider n+1.

Fix u and v as provided for y1, y2, ..., yn. Applying Lemma 10 to yn+1,
there are u′ and v′ defined on C (yn+1) that represent % (by their sum) over
all of C (yn+1). The latter includes a nonempty W -value intersection with
Ayn , because yn+1 and yn are close. This means that we can use an affine
transformation of u′ and v′ that would be identical to u and v, respectively,
over their intersection.

Clearly, the newly-extended u and v will represent preferences over C (yn+1).
To see that they do so for all of

⋃
y′∈C Ay′ we use transitivity as before.�

We are finally ready to complete the proof. We argue that there exists
a double-sequence

..., y−2, y−1, y0, y1, y2, ...

such that (i) yi and yi+1 are close for i ∈ Z; (ii) Y =
⋃
i∈ZC (y).

To see that this is the case, use the range of the function W as follows:
first, consider a bounded interval [−M,M ] in the range of W . The interior
of W (Ay) for all y ∈ Y is an open cover of [−M,M ], and thus has a
finite subcover. From such a subcover one can choose a finite sequence
y1, y2, ..., yn ∈ Y such that yi is close to yi+1 for i = 1, ..., n − 1 and that
[−M,M ] ⊂

⋃
i≤nW (Ay). Then, by induction on M one generated the

sequence ..., y−2, y−1, y0, y1, y2, ... such that (i) yi and yi+1 are close for i ∈ Z;
(ii) W (A) =

⋃
i∈ZW (Ay). Finally, one considers Lemma 11 and notes that

in its inductive proof the functions u and v are defined as extensions of the
same functions in previous steps. Repeating this argument for the doubly-
infinite sequence completes the proof of existence of u and v.

7.4.3 Sufficiency – Part II: Continuity

We now turn to prove that the functions constructed above are continuous.
Observe that for this to be true, one has to rely on the specific construction
by which u (x0, y) = 0, which guarantees that u (x0, ·) is continuous in y.
Indeed, it is easy to see that by defining

u′ (x, y) = αu (x, y) + β (y)

v′ (y, z) = αv (y, z)− β (y)

for a discontinuous β (·), one can represent % by u′ (x, y) + v′ (y, z) where
neither u′ nor v′ are continuous, though their sum is.

48



Step 1: Continuity of u+ v: It is convenient to rely on the continuous
function W that represents %. Since u (x, y)+v (y, z) and W both represent
%, there exists a monotonically increasing φ : R→ R such that

u (x, y) + v (y, z) = φ (W (x, y, z))

for all (x, y, z) ∈ X × Y × Z. We claim that φ is continuous. Assume that
it isn’t, and that there exists ξn → ξ and ε > 0 such that

φ (ξn) < φ (ξ)− ε (14)

or,
φ (ξn) > φ (ξ) + ε. (15)

Consider first case (14). As ξ is in the domain of φ, it is in the range of
W and thus ξ ∈ W (Ay) for some y’s. For each one of these, it has to be
the case that ξ = minW (Ay). Otherwise, we can find an, a ∈ Ay such that
an → a but φ (W (an)) fails to converge to φ (W (a)), which is impossible
because u (x, y) + v (y, z) is continuous on each Ay separately.

As the range of W is connected, and it is the union of open intervals
{W (Ay)}y, it follows that

ξ = min∪yW (Ay)

in which case (14) is impossible.
Similarly, in case (15) we conclude that ξ = max∪yW (Ay), and a con-

tradiction results again. We therefore conclude that u (x, y) + v (y, z) =
φ (W (x, y, z)) is a continuous function on A = X × Y × Z.

Step 2: Continuity of u, v: We now wish to show that u is continuous
on X × Y . Clearly, this will mean that u is continuous on X × Y × Z and
therefore that so is

v (y, z) = φ (W (x, y, z))− u (x, y) .

To this end we show that u (x, y) is a continuous function of y, and that it
is uniformly continuous with respect to x:

Lemma 12. Let there be given x̃ ∈ X and ỹ ∈ Y . For every ε > 0 there
exists δ > 0 such that for all x ∈ X and y ∈ Y , if

|x− x̃| , |y − ỹ| < δ

then
|u (x, y)− u (x, ỹ)| < ε.
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Proof : Assume not. Then there are x̃ ∈ X, ỹ ∈ Y and ε > 0 such
that ∀δ > 0 there are x, y that are δ-close to x̃, ỹ, respectively, but that the
converse inequality holds. We can therefore choose a sequence {(xn, yn)}
such that (xn, yn)→ (x̃, ỹ) as n→ 0 but, for every n,

|u (xn, yn)− u (xn, ỹ)| ≥ ε. (16)

Choose z̃ ∈ Z. As f (x, y, z) = u (x, y) + v (y, z) is continuous, there
exists N such that for all n ≥ N we have

|f (xn, yn, z̃)− f (x̃, ỹ, z̃)| < ε/10. (17)

Also, as u (·, y) is continuous for every y, u (xn, ỹ) → u (x̃, ỹ) as n → 0 and
we can assume that for all n ≥ N we also have

|u (xn, ỹ)→ u (x̃, ỹ)| < ε/10. (18)

Consider

|f (xn, yn, z̃)− f (x̃, ỹ, z̃)|
= |u (xn, yn) + v (yn, z̃)− u (x̃, ỹ)− v (ỹ, z̃)|
= |[u (xn, yn)− u (xn, ỹ)] + [u (xn, ỹ)− u (x̃, ỹ)] + [v (yn, z̃)− v (ỹ, z̃)]| .

By (18) we know that the middle square brackets denote a small expression,
as does the sum of the three square brackets (by (17)). However, the first
square brackets is at least ε by (16). This means that the last expression
should also be relatively large. Specifically, for every n it follows that

|v (yn, z̃)− v (ỹ, z̃)| ≥ ε/2. (19)

Consider now the sequence {(x0, yn, z̃)}n and observe that (x0, yn, z̃)→
(x0, ỹ, z̃) as n→ 0. By continuity of f we should have

u (x0, yn) + v (yn, z̃)→ u (x0, ỹ) + v (ỹ, z̃) .

However, u (x0, yn) = u (x0, ỹ) = 012 while (19) shows that v (yn, z̃) fails to
converge to v (ỹ, z̃), which is a contradiction.�

We finally show that u is continuous. Assume that (xn, yn) → (x, y) as
n→ 0 for some point (x, y) ∈ X × Y . Writing

u (x, y)− u (xn, yn)

= [u (x, y)− u (xn, y)] + [u (xn, y)− u (xn, yn)] ,

12Observe that the crucial fact is only that u (x0, ·) is continuous, while in our construc-
tion it was guaranteed to be constant.
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we observe that the first brackets converges to 0 because u (·, y) is continuous
(for each y separately) and the second one converges to 0 because of Lemma
12.

7.4.4 Uniqueness

Given a representation by u, v, it is straightforward that

u′ (x, y) = αu (x, y) + β (y) (20)

v′ (y, z) = αv (y, z)− β (y) + γ

also represent preferences for every α > 0, a continuous function β : Y → R
and γ ∈ R.

Conversely, the construction of the functions showed that, given the nor-
malization u (x0, ·) = 0, the only degrees of freedom left are multiplication
of both u and v by a positive constant ad shifting of v by an additive one.

However, relaxing the constraint u (x0, ·) = 0, one can replace it by
any continuous function β so that u (x0, ·) = β (y). Conversely, denoting
β (y) = u (x0, ·) one observes that the transformation (20) holds.
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