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Abstract

Many water utilities use outdoor watering restrictions based on assigned weekly watering days to
promote conservation and delay costly capacity expansions. We find that such policies can lead to
unintended consequences - customers who adhere to the prescribed schedule use more water than
those following a more flexible irrigation pattern. For our application to residential watering in
a high-desert environment, this “rigidity penalty” is robust to an exogenous policy change that
allowed an additional watering day per week. Our findings contribute to the growing literature on
leakage effects of regulatory policies. In our case inefficiencies arise as policies limit the extent to
which agents can temporally re-allocate actions.

Keywords: Outdoor watering, water conservation, multi-equation system, Bayesian estimation,
posterior simulation
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1. Introduction

Water consumption across the globe has tripled in the last 50 years, and is expected to con-
tinue to rise rapidly. Water scarcity is expected to be further exacerbated by global warming via
prolonged droughts and increasing system losses (Cromwell et al., 2007). The United Nations pre-
dicts that by 2030 almost half of the world’s population will be living in areas of high water stress
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(U.N. World Water Assessment Programme, 2009) and nearly every region in the United States
has experienced drought induced water shortages over the last five to ten years (U.S. Environmen-
tal Protection Agency, 2008a). The sustainable provision of water is thus one of the most critical
challenges facing policy-makers in both the U.S. and world at large.

Residential households consume close to two thirds of all publicly supplied water in the United
States (U.S. Environmental Protection Agency, 2002). On average, approximately 15% of residen-
tial use is allocated to landscape and lawn irrigation. However, in the arid west and south this
proportion can be as large as 30-35%. In total, an estimated seven billion gallons of publicly pro-
vided water are allocated for this purpose daily (U.S. Environmental Protection Agency, 2008b,c).
Policy makers and water utilities have thus directed considerable efforts to the management of
residential outdoor irrigation. In most cases these efforts focus on outdoor watering restrictions
(OWRs) that limit the timing, length, and frequency of sprinkler use.2

Such OWRs have been implemented in many areas within and outside the United States. As
noted in Table A1 in Appendix A, most of these regimes limit weekly watering to between one
and three assigned days determined by street address. Moreover, most of these regimes (see, e.g.,
San Antonio or the State of Georgia) follow a paradigm whereby the number of assigned days is
reduced under progressively severe drought conditions.

To date, economists have primarily focused on two aspects of OWR policies: (i) the overall
impact on water demand, and (ii) the welfare effects for residential consumers. For example, Shaw
and Maidment (1987) find that a one-per-five days watering restriction reduced overall demand
by 3-5% during the 1984-85 drought years in Austin, Texas. Renwick and Green (2000) examine
monthly consumption for eight California water utilities during the 1985-92 drought period and find
that OWRs of a general nature generated an approximate 30% reduction in use. The second set
of studies focus on welfare implications of OWRs and other drought-related water use restrictions.
Typically, these studies employ non-market valuation techniques to elicit households’ willingness-
to-pay (WTP) to avoid such restrictions (Griffin and Mjelde, 2000; Hensher et al., 2006), or an
increased risk of future restrictions (Howe and Smith, 1994; Griffin and Mjelde, 2000).

Despite the growing importance of OWRs as a Demand-Side Management (DSM) interven-
tion, surprisingly little is known about the relative performance of different OWR implementation
strategies. Given that OWRs vary substantially across communities, such omission is particularly
noteworthy. This study seeks to fill this gap in the literature. We examine daily consumption data
for thousands of customers in the Reno / Sparks area of Northern Nevada during the 2008 and
2010 summer months. This temporal break affords a unique opportunity to examine an exogenous
policy change in OWRs that allowed households an added assigned watering day each week during
the 2010 watering season.

Our analysis uncovers an unintended consequence associated with the use of assigned watering
schedules - weekly water use and peaks are significantly higher during weeks that include all officially
assigned watering days compared to weeks with an equal number of watering days but a more flexible
pattern of use. These “rigidity penalties” are substantial, amounting to 20-25 percent of weekly

2Given the price inelastic nature of water demand, such regulatory interventions are more effective means to
influence consumption than price-based policies (Renwick and Green, 2000; Mansur and Olmstead, 2007; Olmstead
et al., 2007; Worthington and Hoffman, 2008). Furthermore, there are generally fewer equity concerns and less
political resistance to OWRs than to price-based policies (Renwick and Archibald, 1998; Timmins, 2003; Brennan
et al., 2007).
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consumption and 30-40 percent of weekly peaks for the typical customer. Although the 2010 policy
change had a noticeable impact on daily peaks, it had no discernible effect on weekly consumption
of the associated “rigidity penalties”.

Viewed in its totality, our data call into question the efficacy of OWRs that limit watering to as-
signed days. In this regard, our analysis extends prior work exploring the unintended consequences
of policy actions that either introduce heterogeneity in standards across factories or regions (Felder
and Rutherford, 1993; Fowlie, 2009) or nested state and federal regulation (McGuinness and Eller-
mann, 2008; Goulder and Stavins, 2011; Goulder et al., 2012).3 Whereas the cited work focuses on
leakages that arise through the spatial reallocation of actions, our paper highlights that a similar
phenomena can arise if policies limit the extent to which agents can temporally reallocate actions.
In our setting, adherence to the official water schedule requires households to ignore time-varying
conditions such as high wind events that reduce the efficiency of irrigation systems.

2. Empirical Background and Data

Water provision in the Reno / Sparks urban area is managed by the Truckee Meadows Wa-
ter Authority (TMWA), a non-profit, community-owned public utility. TMWA first implemented
OWRs in 1992 in reaction to a prolonged drought. They became permanent in 1996 to guard
against future droughts and assure adequate flows of the Truckee River. The watering regulations
allow sprinkler use during the morning and evening of assigned days determined by the last digit of
a resident’s address.4 Prior to 2010, the policy allowed households two assigned watering days per
week. During the 2010 watering season, the OWR was relaxed and allowed a third weekly watering
day. These OWRs are only mildly enforced with infrequent water patrols and nominal fines (up to
$75) for repeated violations in the same calendar year.

In 2008 TMWA initiated the collection of daily water consumption data for a large, representa-
tive sample of customers. Meter readings were obtained via nightly drive-by’s using remote sensing
devices. Two teams of readers covered the same route for 63 consecutive days between June 22 and
August 23, 2008.5 The same exercise was repeated between June 20 and August 21, 2010 although
the routes differed somewhat from the 2008 itineraries due to construction activities.6

Overall, we observe approximately 1.9 million daily meter readings from approximately 20,000
unique residential customers. In preparing the final data set, we eliminate premises with ownership
changes or multiple ownerships during a given year’s research period. We further drop households
with a total of 14 or more readings of zero consumption and customers with four or more consecutive

3Unintended consequences have also been documented in a number of other settings. For example, Davis and
Kahn (2010) show that while trade in used vehicles between Mexico and the United States following the passage of
NAFTA lowers average vehicle emissions per mile in both countries, aggregate greenhouse gas emissions rise due to
lower retirement rates of used cars in Mexico. Bento et al. (2011) show how policy changes in California that allowed
single-occupancy, ultra-low emission vehicles access to HOV lanes significantly increased travel times for carpoolers
and had no impact on travel times for those in non-HOV lanes.

4There are no restrictions on watering via hand-held hoses.
5The readings were obtained between the hours of 9pm and 3am. According to TMWA, the vast majority of

households complete watering by 9pm.
6Drivers were instructed to proceed no slower than the posted speed limit to assure adequate spatial coverage.

While this resulted in a large number of customers being included in the sample, it also generated some missing read-
ings due to parked vehicles or other obstacles preventing a clean line-of-sight. Therefore, a completely uninterrupted
series of readings is available only for a small subset of the sample.
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zero readings anywhere in the daily series to lower the risk of including non-permanent residences
and vacation homes. These cleaning steps truncated the set of eligible residents by approximately
15% for each year.

Given our focus on weekly watering frequencies, only weeks for which we obtain a full set
of readings for a given household are usable. Further, to identify a household’s watering days
and weekly watering patterns, a minimum number of intact weeks (MIW) was required. Yet,
to maximize the number of residents present in both sample periods, we had to consider the
relationship between the stringency of our MIW criterion and the size of our overlap sample. In
balancing these requirements we settle for an MIW threshold of five full weeks of daily readings.
After eliminating a few isolated cases with obvious water leaks or missing information on basic
building characteristics we generate a final sample that includes 52,666 weekly observations from
8,747 residents for 2008 and 48,573 observations from 7,652 unique residents for 2010. Of these
households, 1,766 appear in both the 2008 and 2010 samples and comprise our “overlap” sample.
Table 1 shows the distribution of intact weeks for both the full and overlap samples by year.

Table 1: Sample sizes for 2008 and 2010

2008 2010
intact weeks HHs % obs % HHs % obs %

5 3,567 40.8% 17,835 33.9% 2,084 27.2% 10,420 21.5%
6 2,284 26.1% 13,704 26.0% 826 10.8% 4,956 10.2%
7 2,041 23.3% 14,287 27.1% 4,739 61.9% 33,173 68.3%
8 855 9.8% 6,840 13.0% 3 0.0% 24 0.0%

Total 8,747 100.0% 52,666 100.0% 7,652 100.0% 48,573 100.0%

Overlap∗, 2008 Overlap, 2010
intact weeks HHs % obs % HHs % obs %

5 679 38.4% 3,395 31.6% 1,061 60.1% 5,305 52.4%
6 435 24.6% 2,610 24.3% 121 6.9% 726 7.2%
7 463 26.2% 3,241 30.1% 584 33.1% 4,088 40.4%
8 189 10.7% 1,512 14.1% 0 0.0% 0 0.0%

Total 1,766 100.0% 10,758 100.0% 1,766 100.0% 10,119 100.0%
∗ “overlap” comprises households sampled in both 2008 and 2010

The top half of Table 2 depicts basic household characteristics for the two full samples. The
2010 sample comprises, on average, slightly smaller and older properties. There is also a 44%
decline in average tax-assessed property value from 2008 to 2010 reflecting the severe economic
downturn in Nevada over the sample period.

We combine our household data with the following basic climate indicators: average, minimum,
and maximum daily temperature (in ◦F), average wind speed (over 24 hourly measurements, in
knots), and maximum sustained wind speed (in knots, measured for ten minutes every hour). As is
common in arid high-dessert climates, there were no noteworthy rainfall events during our sampling
periods. Climate statistics are shown in the bottom half of Table 2. Although the summer of 2010
was slightly cooler than the summer of 2008, the wind statistics are very similar for the two sampling
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periods.

Table 2: Household and climate characteristics

2008 2010
mean std. min. max. mean std. min. max.

age 20.9 17.6 1.0 104.0 23.1 16.4 2.0 106.0
lot size (1000 sqft) 10.1 7.0 0.0 49.7 7.6 3.3 0.0 48.8

sqft (1000s) 2.0 0.8 0.5 15.2 1.8 0.6 0.5 7.7
value ($10,000s) 270.5 160.2 69.4 2637.4 150.7 65.6 33.8 762.8

fixtures 12.0 3.4 0.0 64.0 11.1 2.8 0.0 27.0
bedrms 3.3 0.9 0.0 23.0 3.2 0.7 0.0 8.0

bathrms. 2.4 0.7 0.0 16.0 2.2 0.6 0.0 6.0

avg. temp (F) 77.9 3.3 69.4 84.2 75.8 4.7 61.7 85.4
min. temp 59.9 3.5 53.1 66.0 58.9 4.8 44.6 69.1
max. temp 95.7 3.0 89.1 102.0 92.8 5.2 78.8 102.2

avg. wind (knots) 5.2 1.4 2.8 9.3 5.7 1.3 2.5 8.3
max. wind 16.2 4.2 7.0 29.9 16.8 4.2 8.9 32.1
max. gust 23.3 4.1 15.0 30.9 24.5 5.0 14.0 37.9

3. Identification of Policy Effects

3.1. Definition of Treatments

We aim at identifying the impact of two design features of the Truckee Meadows OWRs on
weekly water use and peak (maximum daily consumption in a given week)7: (i) the total number
of permissible watering days per week, and (ii) the “pinning” of the allowable number of days
to specific days of the week (say, Wednesday, Saturday), versus letting households choose their
watering days in a more flexible fashion.

For the former objective, we hypothesize that granting more watering days will induce a more
even distribution of weekly irrigation, and thus reduce weekly peaks for the typical household. In
addition, this smoother distribution, by reducing the gap between permitted days, may curb losses
due to runoff and evaporation, as households are less likely to over-soak their lawn on assigned
days.

For the latter objective, we separate weekly watering patterns into three categories: (i) “Sched-
ule” (S), (ii) “Schedule-plus” (SP ), and (iii) “Off-schedule” (OS). The first group comprises weeks
with watering patterns that correspond exactly to the assigned TMWA schedule. The second cate-
gory describes weeks that include all assigned days, plus some additional (“illegal”) days of outdoor
use. The third group exhibits the most varied weekly watering patterns, with the common fea-
ture of non-watering on at least one of the assigned days. For ease of exposition we will at times

7System-wide consumption peaks are important to utilities as they are closely related to the cost of water provision.
Specifically, lower peak demand can be satisfied via stored water, distributed by gravity. Storage units can then be
replenished at night at lower pumping costs. In contrast, high peak use forces daytime pumping, when electricity
costs are highest. If this occurs frequently, the utility may have to undergo costly capacity expansions for water
storage. Therefore, a utility generally tries to implement water use policies that reduce daily peaks at the household
level.
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combine the first two groups under the heading “Schedule-based” (SB). Thus, S ∪ SP = SB, and
SB ∪ OS = entire sample. This centers the analytical focus squarely on the degree to which the
official schedule influences or “guides” irrigation patterns.

We hypothesize that S types are nudged inadvertently towards wasteful behavior for two main
reasons: First, they face the “large gaps” problem mentioned above, which can lead to over-watering
and corresponding losses to runoff and evaporation. Second, adherence to the official schedule
requires that such households ignore time-varying natural conditions such as (common) high wind
events that can further exacerbate irrigation inefficiency. Both effects are likely to increase weekly
consumption and, especially, weekly peaks.

In comparison, SP types may be less prone to over-watering, as they distribute weekly irriga-
tion over more-than-permitted days, but may still experience wind losses in their persistence to
incorporate the assigned days. In contrast, we surmise that OS types pay the least attention to the
official schedule, and more attention to their yard’s actual water needs and / or random fluctuations
in weather conditions. This makes them the most disobedient, but perhaps also the most efficient
TMWA customers.

In summary, we set forth to explore whether compliance with Reno’s OWR policy introduces
unintended consequences that compromise conversation aims. We will henceforth refer to water
losses induced by the day-of-week assignment as “rigidity effect”.

3.2. Identification strategy

We have exogenous variation in the number of permitted watering days - the policy change
from two to three assigned days between 2008 and 2010. Ideally, we would have also been able
to exogenously randomize the flexibility with which a household can allocate these days over the
course of a week, i.e. assignment to S, SP , and OS categories. Unfortunately, such exogenous
policy variation did not occur during our research period.

Instead, we rely upon an alternate strategy for identification - other exogenous shocks that sort
a given household into one type or other in an given week. Conditional on the existence of such
shocks we can then exploit both cross-sectional and within household variation in weekly watering
patterns to estimate the rigidity effect. This is because there are relatively few customers that
follow the same weekly irrigation strategy (S, SP , or OS) for the entire observation period. Most
households display a mixed pattern of weekly irrigation, both in terms of frequency and timing.
Therefore, identification can draw on both within and between household variation.

The challenge at hand is thus to (i) identify plausible exogenous drivers that induce customers
to change watering patterns, and (ii) convincingly rule out confounding effects that could drive
both weekly watering patterns and outcomes of interest, i.e. weekly use and peak.

With respect to exogenous factors we provide some evidence in the empirical section that SB
versus OS choices are likely driven by randomly fluctuating daily wind patterns. Specifically, a given
household may want to avoid wind-induced water losses - a common problem in this rain shadow /
foothill location - by transferring watering events from a windy day to the next calm day. For the
Reno/Sparks case this usually means foregoing the evening application and instead watering on the
next (potentially unassigned) day. Inter -household differences in “wind awareness” or ability to
flexibly manipulate irrigation systems then drives much of the observed cross-household variation
in adherence to the official schedule. Naturally, some customers may also be intrinsically more
reluctant to break the official rules, and may require “stronger wind shocks” to transfer watering
to an off-day. This would add additional cross-sectional variation in observed behavior.
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In addition, there may be intra-household, time-varying differences in the daily ability to react
to the threat of irrigation losses due to wind. For example, the entire household or the person in
charge of the irrigation system may not be at home or unavailable on a given day to adjust the
system. Similarly, on a given day the household may anticipate being unable to irrigate the next
morning, and thus be reluctant to skip that day’s evening application despite windy conditions.
This would explain intra-household variations in the observed weekly irrigation patterns.

Regarding potentially confounding effects, our econometric specification controls for unobserved,
invariant household effects, as well as weekly climate conditions. Therefore, the main concern in
this respect would be confounding effects that vary both over time and across households. Most
notably, one might surmise that whenever a household anticipates a week with high water need, it
may switch to a more conservative watering pattern consistent with official regulations to lower the
risk of fines. This would confound any causal link between the degree of adherence to the official
schedule and water use. This conjecture builds on two underlying assumptions: (i) Households’
weekly irrigation needs change from week to week in a heterogeneous fashion, and (ii) households
care about enforcement and fines. We argue that neither one is very likely.

To start, the most plausible reason that could drive a sudden need to use more water in a given
week for irrigation purposes would be an extreme climate event, such as the anticipation of a very
hot or dry week. Perhaps some households are more vulnerable to such extreme events than others,
given vegetation cover, soil quality, and other landscape-related features. However, as is evident
from Table 2 the local climate during our summer research period is uniformly hot and dry. There
is not a single day of precipitation, and the daily temperature range is quiet narrow. The only
variation comes through daily and rather random wind patterns, and those cannot be anticipated
on a weekly basis. Thus, it is rather unlikely that any given customer experiences pronounced
changes in weekly irrigation demand over our research period.

In addition, it is equally unlikely that the threat of a penalty would induce customers to switch
from a flexible to a compliant weekly pattern, even if such heterogeneous, time-varying changes
in water need existed. As stated above, the enforcement of the official watering schedule is very
lenient, and fines are nominal. A household receives two warnings for blatant violations before
a fine of $75 is issued. Thus, it is rather unlikely that the threat of low fine, collected with low
probability, is sufficient to induce a change in behavior, irrespective of weekly water need.

Appendix B provides further evidence against this “comply if anticipated use is high” hypothesis.
In summary, we feel confident to proceed with our analysis even in absence of an ideal setting with
exogenous policy variation for all treatments of interest.

4. Descriptive Analysis

4.1. Classification of weekly irrigation patterns

Establishing a link between consumption and weekly watering patterns requires the identifica-
tion of outdoor watering events for a given household and day. Specifically, our objective is to sort
the daily observations for each household into two categories: (i) days with some outdoor water
use, and (ii) days with indoor-only water use.

This categorization is challenging since we only observe total daily use rather than usage for
different purposes. Ideally, outdoor watering days should be clearly identifiable as pronounced
spikes in a customer’s series of observed consumption days. However, the distinction between cat-
egories becomes blurred for households with limited need for outdoor watering or high fluctuations
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in indoor use. We therefore use a series of household-specific K-means clustering algorithms (Mac-
Queen, 1967) to sort daily observations into a low use (“indoor only”) and high use (“indoor plus
some outdoor watering”) category. The details of this identification strategy are given in Appendix
B.

4.2. Descriptive Results

Our analysis of OWR design effects requires aggregating the daily sample to a weekly format.
Table 3 provides a summary of cell counts and sample percentages for the different week-type
categories and watering frequencies. For ease of exposition we combine S and SP weeks into the
broader SB category, as defined above.8 The sparsely populated weekly frequencies of five and
higher are captured as a single “> 4” category. The first half of the table shows results for 2008,
while the second provides summaries for 2010. The table has three blocks of rows, corresponding
to SB weeks, OS weeks, and the combined sample. The “percent of sample” column relates row
counts to the entire sample size for each year. For example, SB weeks with twice watering (i.e.
the S group by our definition above) comprise 27.5% of the entire 2008 sample. Overall, watering
patterns that are perfectly compliant with the official schedule comprise the largest sample share
and account for just over a quarter of all sample weeks.

The “percent all within” column reports the percentage share for a given row count that corre-
sponds to households that have all their observations in that very category. For example, approx-
imately 42.8% of the observations in the S category for 2008 come from households that always
water twice and on their assigned days. Yet, the majority of customers exhibit seasonal water
patterns that include a mix of different week-types and frequencies - only 18.5% of sample weeks in
2008 and 15.5% in 2010 are associated with customers that always water with the same weekly fre-
quency. This is important for our analysis below as it suggests that the observed differences in use
and peaks between SB and OS week -types are not driven by unobserved household characteristics.

Table 4 depicts weekly use and peak by frequency and week-type. We stress three key results
captured by this table. First, regardless of watering pattern, consumption increases with weekly
frequency. This is consistent with prior work showing that capping weekly watering frequency
reduces total use. Second, peaks remain relatively stable across frequencies in the two to four
applications range. Third - and most importantly - weekly consumption and peaks are substantially
higher for weeks that include all assigned days (“schedule-based”) compared to weeks of identical
frequency with more flexible watering patterns (“off-schedule”). In 2008, these differences amount
to 30-40% for weekly consumption and 50-60% for weekly peak. In 2010 these differentials are
slightly attenuated amounting to 25-30% for use and 24-26% for peak.9

8We stress that our classification into different watering patterns applies to a given household-week, not a specific
household across the entire research period. As discussed in the next section, the majority of households switches
frequently between weekly watering patterns. Therefore, there does not exist a clear and systematic classification at
the household level that distinguishes along this key dimension of decreasing schedule-adherence. However, we do
control for observable and unobservable household characteristics in our econometric specification.

9The patterns captured in Tables 3 and 4 are qualitatively similar for the overlap sample. Consumption is
approximately 25-35% higher for the SB group than the OS group at all frequencies. Similarly, SB peaks exceedOS
peaks by 45-55%. Summary statistics for the overlap sample are available from the authors upon request.
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Table 3: Cell counts and percentages by watering frequency and week-type

2008 2010
weekly

watering % of % % of %
days count sample all w/in count sample all w/in

schedule-based
2* 14,497 27.5% 42.8% - - -
3** 6,374 12.1% 9.2% 12,625 26.0% 35.1%
4 5,595 10.6% 16.1% 3,650 7.5% 3.3%
>4 6,053 11.5% 11.6% 6,001 12.4% 15.7%

Total 32,519 61.7% 25.8% 22,276 45.9% 24.7%

off-schedule
0 2,924 5.6% 0.0% 2,822 5.8% 0.0%
1 4,198 8.0% 1.6% 3,979 8.2% 0.9%
2 4,795 9.1% 5.5% 8,004 16.5% 9.9%
3 4,257 8.1% 7.4% 6,256 12.9% 8.4%
4 2,610 5.0% 6.1% 3,518 7.2% 7.4%
>4 1,363 2.6% 6.5% 1,718 3.5% 2.5%

Total 20,147 38.3% 4.4% 26,297 54.1% 6.3%

all
0 2,924 5.6% 0.0% 2,822 5.8% 0.0%
1 4,198 8.0% 1.6% 3,979 8.2% 0.9%
2 19,292 36.6% 35.5% 8,004 16.5% 9.9%
3 10,631 20.2% 9.0% 18,881 38.9% 28.9%
4 8,205 15.6% 13.2% 7,168 14.8% 5.4%
>4 7,416 14.1% 10.8% 7,719 15.9% 12.9%

Total 52,666 100.0% 18.5% 48,573 100.0% 15.8%

*”schedule” group for 2008 / **”schedule” group for 2010

5. Econometric Framework

To examine if these descriptive results hold up when controlling for climate variations, household
characteristics, and unobserved household effects we now turn to our econometric analysis. We
assume that over the course of a week a given household makes daily choices on watering occurrence
and total use, given watering. From the analyst’s perspective these choices will be observed as joint
weekly outcomes on frequency, use, and peak. We thus define such an observed weekly irrigation
scheme (IR) by household i in period p as a bundle of frequency y1ip (zero to seven), total use y2ip,
weekly peak y3ip, and schedule-based pattern (SB vs. OS), i.e.

IRip = IR (y1ip, y2ip, y3ip, SBip) , i = 1, . . . N, p = 1 . . . P (1)

where SBip is an indicator equal to one if the weekly irrigation pattern corresponds to a schedule-
based implementation, and equal to zero for an off-schedule pattern.
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Table 4: Weekly use and peak by watering frequency and week-type

weekly weekly use (1000 gals.) weekly peak (1000 gals.)
watering 2008 2010 2008 2010

days mean std. mean std. mean std. mean std.

schedule-based schedule-based
2 5.84 (3.67) - - 2.34 (1.68) - -
3 6.72 (4.56) 5.39 (2.44) 2.30 (1.85) 1.65 (0.83)
4 7.24 (5.04) 5.95 (2.89) 2.19 (1.86) 1.67 (0.96)
>4 9.83 (7.73) 7.32 (4.41) 2.43 (2.26) 1.70 (1.14)

Total 6.99 (5.26) 6.00 (3.26) 2.32 (1.86) 1.66 (0.95)

off-schedule off-schedule
0 2.44 (2.20) 2.03 (1.52) 0.55 (0.48) 0.46 (0.34)
1 3.38 (2.61) 2.73 (1.85) 1.30 (1.29) 1.04 (0.94)
2 4.20 (3.20) 3.82 (2.23) 1.46 (1.39) 1.37 (0.98)
3 4.80 (3.61) 4.32 (2.58) 1.42 (1.28) 1.31 (0.95)
4 5.52 (4.64) 4.75 (3.00) 1.47 (1.47) 1.31 (1.04)
>4 6.99 (5.80) 5.65 (4.53) 1.67 (1.63) 1.37 (1.24)

Total 4.26 (3.71) 3.83 (2.71) 1.30 (1.32) 1.20 (0.99)

all all
0 2.44 (2.20) 2.03 (1.52) 0.55 (0.48) 0.46 (0.34)
1 3.38 (2.61) 2.73 (1.85) 1.30 (1.29) 1.04 (0.94)
2 5.43 (3.63) 3.82 (2.23) 2.12 (1.65) 1.37 (0.98)
3 5.95 (4.31) 5.03 (2.54) 1.95 (1.70) 1.53 (0.89)
4 6.69 (4.98) 5.36 (3.01) 1.96 (1.78) 1.49 (1.01)
>4 9.31 (7.50) 6.95 (4.49) 2.29 (2.18) 1.63 (1.17)

Total 5.95 (4.91) 4.82 (3.17) 1.93 (1.75) 1.41 (1.00)

Thus, we have three outcomes of interest - y1ip, y2ip, and y3ip. The first outcome, the number of
watering days in a given week, takes the form of an integer that is naturally truncated from above
at U = 7. The remaining outcomes, weekly consumption and peak, are continuous with support
over <+. We wish to identify the effect of weekly watering frequency and degree-of-adherence to
the OWR on use and peak. If household decisions on use and peak were completely independent
from decisions related to weekly frequency, the three outcomes of interest could, in theory, be
analyzed via independent estimation. For example, the use and peak equations could be estimated
via simple random effects (RE) regression that includes difference-in-difference type interaction
terms to capture the incremental effects of weekly frequency, irrigation pattern (SB vs. OS) and
policy change (2008 vs. 2010).

However, if the frequency equation shares common unobservables with either or both of the use
or peak equation, such näıve independent analysis would produce misleading results, as the right-
hand-side variable “frequency” would introduce endogeneity problems. We find this to indeed be
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the case in comparative estimation runs.10 Thus, a plausible econometric model for this application
must accommodate the following key features: (i) Limitations on the natural range of the dependent
variable, (ii) household-specific effects to control for unobserved heterogeneity, and (iii) an ex-
ante unrestricted covariance matrix for these unobserved effects, i.e. full correlation of all three
equations. To incorporate these modeling challenges in a computationally tractable fashion we
deviate from a standard linear regression framework and classical estimation, and turn instead to
a hierarchical system approach, estimated via Bayesian tools.

As point of departure, we combine a truncated Poisson density for the watering frequency
equation with two exponential densities for weekly consumption and peak (see e.g. Munkin and
Trivedi, 2003).11 Adding the household effects yields our full specification, which we label the
Hierarchical Truncated Poisson- Exponential (HTPE) model. The Hierarchical Truncated Poisson
(HTP) component of the HTPE is given as

f (y1ip|λ1ip, 0 ≤ y1ip ≤ U) =
exp (−λ1ip)λ

y1ip
1ip

y1ip!

(
U∑
k=0

λ1ip
k

k!

) with

E (y1ip) = λ1ip = exp
(
x′1ipβ1 + u1i

) (2)

where the log of the untruncated expectation, λ1ip , is a linear function of vector xip containing
household and climate variables, and individual-specific effect u1i.

12

The Hierarchical Exponential (HE) part is specified as

f (yjip|λjip) = λjip ∗ exp (−λjipyjip)
λjip = exp

(
−z′jipψj − d′ipδj − uji

)
E (yjip) = λ−1jip = exp

(
z′jipψj + d′ipδj + uji

)
, j = 2, 3

(3)

where the z-vectors capture again household and climate information, the random terms are as in
(2) and E denotes the expectation operator. Importantly, vector dip comprises a set of U indicator
variables, one for each possible value of y1ip that exceeds zero. The element of dip corresponding
to the observed value of y1ip is set to one, all others to zero. More concisely:

dip,k =

{
1 if y1ip = k,

0 otherwise
k = 1 . . . U (4)

Thus, we are allowing the intercept of the logged expectation of yjip, j = 2, 3, to shift with the
observed number of watering days compared to the implicit baseline of zero outdoor watering.

This implies a proportional change of exp
(
d′ipδj

)
for the expectation in absolute terms.

10The results for these RE regressions and a discussion thereof are provided in Appendix E.
11The exponential component has similar distributional characteristics as the familiar log-normal regression model,

but exhibits more desirable mixing properties in our Bayesian estimation framework.
12It should be noted that the restrictive mean-variance equality that is a prominent feature of the standard Poisson

density no longer holds under truncation (e.g. Rider, 1953). A second reason for the mean-variance equality to break
down is the inclusion of the random household effect. See for example Hausman et al. (1984).
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The model is completed by stipulating a joint density for the household effect:

ui =
[
ui1 ui2 ui3

]′ ∼ mvn (0,Vu) (5)

where mvn denotes the multivariate normal density, and the variance matrix is ex ante unrestricted.
As mentioned above, if this matrix contains non-zero covariances, a näıve model ignoring the linkage
across the three equations would be plagued by endogeneity bias, since the frequency indicator dip
appears on the right hand side of both the use and peak equation.13

Letting β2 =
[
ψ′2 δ′2

]′
, β3 =

[
ψ′3 δ′3

]′
, β =

[
β′1 β′2 β′3

]′
, and collecting all outcomes and

explanatory data in vector y and matrix X, respectively, the likelihood function for our model over
all individuals i = 1 . . . N , unconditional on error terms, takes the following form:

p(y|β,V u,X) =

N∏
i=1

∫
ui


P∏
p=1

 λ
y1ip
1ip

y1ip!

(
U∑
k=0

λ1ip
k

k!

)λ2ipλ3ip exp (− (λ2ipy2ip + λ3ipy3ip))




f (ui|Vu) dui

(6)

Given the N multi-dimensional integrals over ui this model would be challenging to estimate
using conventional Maximum Likelihood procedures. We therefore employ a Bayesian estimation
framework.

We begin by specifying the prior distribution for the primary model parameters, β and Vu.
We choose a standard multivariate normal prior for β, and inverse Wishart (IW) priors for Vu, i.e.
β ∼ mvn (µ0,V0), Vu ∼ IW (ψ0,Ψ0). The IW parameters are the degrees of freedom and scale
matrix, respectively. The IW density is parameterized such that E (Vu) = (ψ0 − kr − 1)−1 Ψ0.
We facilitate the implementation of our posterior simulator (Gibbs Sampler) by augmenting the
model with draws of the error components {ui}Ni=1.

14 The augmented posterior distribution is
proportional to the priors times the augmented likelihood, i.e.

p
(
β,Vu, {ui}Ni=1 , | y,X

)
∝

p (β) ∗ p (Vu) ∗ p
(
{ui}Ni=1 ‖ Vu

)
∗ p
(
y | β, {ui}Ni=1 ,X

) (7)

where the last term describes the likelihood function conditioned on all error terms.
The Gibbs Sampler draws consecutively and repeatedly from the conditional posterior distri-

butions p
(
β | {ui}Ni=1 ,y,X

)
, p
(
Vu | {ui}Ni=1

)
,

13We also included an observation-specific error in an earlier specification. The parameter estimates generated by
that model were virtually identical to those produced by the single-error specification, and both variances and covari-
ances associated with the observational error emerged of negligible magnitude compared to the variance component
for the individual-level effect.

14The data augmentation step circumvents the need to directly evaluate the integrals in (6). A general discussion
of the merits of this technique of data augmentation is given in Tanner and Wong (1987). Applications with data
augmentation involving hierarchical count data models include Chib et al. (1998) and Munkin and Trivedi (2003).
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and p
(
{ui}Ni=1 | β,Vu,y,X

)
. Draws of β and {ui}Ni=1 require Metropolis - Hastings (MH) sub-

routines in the Gibbs Sampler. Posterior inference is based on the marginals of the joint posterior
distribution.15

6. Estimation Results

6.1. Posterior results

The regressors in the parameterized expectation of the frequency equation include a combination
of home characteristics and climatic variables to control for temperature and wind speed, in addition
to an indicator for the 2010 irrigation season and the interaction of this indicator with the various
climate variables. The parameterized mean functions for use and peak include additional home
characteristics that control for indoor water use and exclude some of the climate variables for
identification purpose. These equations also feature indicators for weekly watering frequency, the
interaction of these terms with indicators for the 2010 watering season and schedule based weekly
watering patterns, and the two-fold interaction of the schedule based and 2010 indicators with both
our frequency variables and different wind measures.16

We estimate all models using the following vague but proper parameter settings for our priors:
µ0 = 0,V0 = 100 ∗ Ik, ψ0 = 5, and Ψ0 = I3. We discard the first 20,000 draws generated by
the Gibbs Sampler as “burn-ins”, and retain the following 10,000 draws for posterior inference.
We assess convergence of the posterior simulator using Geweke’s (1992) convergence diagnostics
(CD). These scores clearly indicate convergence for all parameters. To gauge the degree of serial
correlation in our Markov chains we also compute autocorrelation coefficients at different lags for
all model parameters. These AC values drop below 0.25 by the 10th lag for most parameters, and
by the 20th lag for all model elements. This indicates that our posterior simulator has reasonably
efficient mixing properties.

The posterior results for the frequency equation are shown in Table 5. The table also captures
the results for the elements of the error variance matrix Σ, expressed as standard deviations and
correlations. For each parameter we report posterior means, posterior standard deviations, and
the probability mass of a given marginal posterior that lies above the zero-threshold. The effects
of our various climatic controls are as expected. For example, the frequency of weekly watering
events is higher on weeks with higher maximum daily temperatures and lower on weeks with higher
average daily wind speeds. Interesting, however, the effect of such controls are attenuated for the
2010 season. Taken jointly, our data thus suggest that climate conditions have a more pronounced
effect on the variability of watering frequency when the official OWR ceiling is lower.

Turning to the elements of Σ in the lower half of Table 5, we note that with exception of ρ13
all terms are estimated with high precision (i.e. exhibit low posterior standard deviation relative
to the mean). The standard deviations (labeled σj , j = 1 . . . 3,) are of non-negligible magnitude,
which confirms the presence of unobserved household effects in all three equations. Household
unobservables are highly correlated for equations two and three, and we find a mild, positive
correlation between the frequency and the use equations.17

Posterior results for the weekly use and peak equations are summarized in Table 6. Regarding
weekly use, the table captures three main results. First, consumption increases clearly with weekly

15The detailed steps of the posterior simulator and the Matlab code to implement this model are available from
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Table 5: Estimation results for frequency equation and error terms

mean std. prob (>0)

constant -4.415 (0.519) 0.000
mintemp -0.050 (0.050) 0.161
maxtemp 0.151 (0.048) 0.999
avgwind -0.988 (0.281) 0.000
maxwind 0.407 (0.134) 1.000

gdd 0.022 (0.012) 0.958
lnland 0.087 (0.007) 1.000
lnvalue 0.237 (0.010) 1.000

year2010 4.129 (0.731) 1.000
mintemp * 2010 -0.198 (0.064) 0.001
maxtemp * 2010 -0.395 (0.086) 0.000
avgwind * 2010 0.760 (0.295) 0.997
maxwind * 2010 -0.281 (0.139) 0.019

gdd * 2010 0.061 (0.019) 0.999

std.’s and corr.’s for ui

σ1 0.434 0.004 1.000
ρ12 0.056 0.014 1.000
σ2 0.477 0.005 1.000
ρ13 -0.005 0.014 0.364
ρ23 0.985 0.001 1.000
σ3 0.527 0.005 1.000

mean = posterior mean,
std. = posterior standard deviation,
prob(>0) = share of posterior density to the right of zero

frequency. Furthermore, this result remains essentially unchanged in 2010. Second, weeks associ-
ated with schedule-based (SB) watering exhibit increased use compared to the implicit off-schedule
(OS) baseline at any frequency. These rigidity penalties amount to 20-23 percent, and are highest
for weeks that follow the official schedule exactly.18 Third, controlling for frequency and watering
pattern, the residual policy effect is of negligible magnitude.

The results for weekly peak are given in the last three columns of the table. In contrast to use,
peaks do not change much over frequency in either year. However, as for use, peaks are substantially
larger for SB-type weeks compared to OS-type patterns in 2008, and this difference is greater at
lower frequency levels. This gap diminishes in 2010, as peaks for SB-type implementations decrease
by 18-23 percent compared to the 2008 season, and peaks for OS-types increase slightly (by 6-9
percent). The reduction in the “rigidity penalty” for peaks in 2010 compared to 2008 likely reflects

the authors upon request.
16Details on household and climate regressors are provided in Appendix D.
17As illustrated in the Appendix E, this linkage via unobservables between equations one and two is sufficient to

produce inconsistent parameter estimates for both use and peak models if the system is estimated via independent
random effects regressions.

18We use the conversion formula of exp(β)− 1 suggested by Halvorsen and Palmquist (1980) to interpret marginal
effects associated with binary variables, given the log-normal form of the parameterized mean function.
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the additional flexibility afforded to compliant customers by the revised OWRs. Schedule-adherent
households now have more options to reduce daily watering on windy days and are less likely to
face the dilemma of incurring wind losses or violating official rules by making up for a skipped
application on non-assigned days.

However, we also acknowledge that to some extent this reduction in rigidity gap, especially
via increased peaks for OS-types, might be an artifact of our classification scheme: Some 2010
customers may have been sluggish to adjust to the new schedule. As a result, the “rigid” weeks
produced by these residents, classified as SB in 2008, are counted as OS-types in 2010.19 As such,
our estimates can be interpreted an upper bound on the effect of the policy change on the rigidity
penalty for peak use.

The remaining findings for the peak model mirror those from the weekly use equation: namely,
there are no noteworthy residual policy effects. Overall, we conclude that the results produced by
our complete econometric specification support the descriptive findings from the preceding section.

Table 6: Estimation results for use and peak equations

weekly use weekly peak
mean std. prob(>0) mean std. prob(>0)

constant -10.766 (0.773) 0.000 -12.706 (0.766) 0.000
freq1 0.392 (0.025) 1.000 0.883 (0.026) 1.000
freq2 0.584 (0.025) 1.000 0.980 (0.026) 1.000
freq3 0.720 (0.026) 1.000 0.989 (0.027) 1.000
freq4 0.821 (0.029) 1.000 0.992 (0.031) 1.000

freq567 0.967 (0.036) 1.000 1.048 (0.036) 1.000
SB * freq2 0.208 (0.066) 1.000 0.379 (0.068) 1.000
SB * freq3 0.197 (0.066) 0.999 0.334 (0.068) 1.000
SB * freq4 0.179 (0.068) 0.995 0.307 (0.071) 1.000

SB * freq567 0.200 (0.071) 0.999 0.233 (0.072) 0.999
year2010 0.185 (0.740) 0.593 -0.178 (0.730) 0.403

freq1 * 2010 -0.010 (0.036) 0.393 -0.009 (0.036) 0.385
freq2 * 2010 0.034 (0.035) 0.837 0.073 (0.035) 0.978
freq3 * 2010 0.045 (0.036) 0.895 0.071 (0.036) 0.977
freq4 * 2010 0.053 (0.041) 0.901 0.092 (0.041) 0.990

freq567 * 2010 0.038 (0.049) 0.786 0.064 (0.048) 0.909
SB * freq3 * 2010 -0.052 (0.144) 0.361 -0.257 (0.147) 0.039
SB * freq4 * 2010 -0.049 (0.146) 0.357 -0.244 (0.150) 0.049

SB * freq567 * 2010 -0.041 (0.147) 0.395 -0.200 (0.151) 0.088

(results for household and climate variables are omitted for brevity, but are given in Appendix D)

mean = posterior mean,
std. = posterior standard deviation,
prob(>0) = share of posterior density to the right of zero

19Recall that every SB designated week must include outdoor use on all assigned days. Hence, any 2008 schedule-
adherent household who fails to adjust to the new OWRs by watering on the third allowable day and switching to
the new assigned week-days during 2010 would produce OS-type weeks for that year - even if there was no change in
the actual watering pattern relative to the 2008 season.
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6.2. Predictive analysis

For a more direct comparison of weekly consumption and peak across weeks with different
watering patterns we generate posterior predictive densities (PPDs) for each irrigation type (SB
vs. OS). Formally, these PPDs are given as

p (yj | xtf) =∫
θ

(∫
uij

(
(yj | xtf,β, uji) f (uji | Vu))d uij

))
p (θ |y,X) dθ,

j = 2, 3,

(8)

where xtf denotes a specific combination of watering pattern t ∈ {SB,OS} and frequency f ∈
{2, 3, 4}, and vector θ comprises the entire set of model parameters. In practice, we simulate these
PPDs by (i) drawing 10 random coefficients from f (uji | Vu)), (ii) computing λij for each uij as
given in (2), and (iii) drawing yj from the exponential density with expectation λij . We repeat
steps (ii) and (iii) for all 10 draws of uij , and steps (i) through (iv) for all 10,000 draws of θ from
the original Gibbs Sampler.

Except for the combination t=SB, f=2, which is only meaningful for 2008, we derive separate
PPDs for yj | xtf for 2008 and 2010 by setting the 2010 indicator and interaction terms accordingly
in the covariate matrix for the use and peak equations. We combine these year-specific PPDs
for final analysis as there is discernible difference in watering behavior across these years once we
control for climatic and household specific variables. The latter are set to their grand sample means
for this predictive analysis.

The resulting PPDs are depicted in Figure 1 for use and Figure 2 for peak. Each subplot
shows PPDs for SB and OS types for a given frequency. Posterior predictive expectations are
superimposed as vertical lines and labeled with their respective numerical value (in 1000 gallons).
As is evident from Figure 1, the SB pattern produces higher expected use than the OS pattern at
all frequencies, with a slightly decreasing relative gap from 14 percent at f = 2 to 12 percent at f = 4.
As shown in Figure 2 these differences in posterior predictive expectation are even more pronounced
for peak. At two watering days, the SB pattern generates a peak that is approximately 28 percent
higher than the OS peak. At three watering days, this difference reduces to 22 percent, and at a
frequency of four it amounts to close to 18 percent. Overall, these predictive results support our
descriptive and analytical findings - a watering pattern that closely follows the officially assigned
days produces noticeably higher weekly consumption and substantially higher peaks than a more
flexible distribution of the same number of watering days across a given week.

7. The Wind Effect

As mentioned at the onset, we believe that the assignment of household-weeks into different
watering patterns is largely driven by exogenous shocks in the form of high wind events. Specifically,
some customers switch to more flexible irrigation patterns to avoid wind-induced water losses.
Conversely, households that follow the assigned schedule are more likely to water under adverse
natural conditions such as high wind events. This increases both use and peak, as it takes more
water per week and per daily application to provide adequate irrigation for a given landscape.
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Figure 1: Predictive distributions of weekly use for a typical household (1000 gallons)

To explore this conjecture in greater detail, we compute the percentage of watering days that
fall on either a windy or very windy day.20 The results are captured in Table 7. In 2008 the average
watering day had a 51% chance of occurring on a windy day and an 18% chance of coinciding with
a very windy day. Importantly, these percentages are higher for the SB group compared to the
OS segment at essentially all frequencies. In 2008, this difference is especially pronounced for the
S category - the share of windy days exceeds the correponding value for OS / twice a week by over
6%. In general, SB type weeks were 3-6% more likely to occur on a windy day and 2-3% more
likely to fall on a very windy day than OS type weeks of comparable frequency. In 2010, which
had slightly fewer windy days overall compared to 2008, the difference in the relative frequency of
wind events across week-types reduces to 1-2% for windy days and falls below the 1% mark for very
windy days. However, as for 2008, the S category experiences the highest risk of wind exposure.

To provide more rigorous support for this “wind hypothesis” we estimate a Probit models of
daily watering decision on average daily temperature (F), an indicator for “windy day” (with max.
sustained speed exceeding the sample mean of 16 knots), an interaction term for “windy” and “SB”,

20“Windy days” are those with a maximum sustained wind speed that exceeds the sample mean (16.51 knots).
“Very windy” days are defined as those with a maximum sustained wind speed at the 75th percentile (19 knots) or
higher.
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Figure 2: Predictive distributions of weekly peak for a typical household (1000 gallons)

and a random household effect. We estimate separate models for the two sample years, and weekly
frequencies of 2, 3, and 4 watering days.

The results are captured in Table 8. For ease of interpretation, the estimated coefficients are
presented as marginal effects, conditional on a random effect of zero. As can be seen from the table,
in 2008 the probability of a observed watering day to coincide with above-average wind conditions
is approximately 5% higher for an “SB” type HW compared to an “OS” type. This difference
shrinks to 1-3% in 2010, but is still significant. Thus, the Probit estimates pair up well with our
descriptive insights in supporting the conjecture that wind events may well be the main driver of
the observed variability in weekly watering patterns, and associated differences in use and peaks
across irrigation types.21

21Irrigation losses due to wind can easily amount to 40-50% in arid climates, even under moderate wind speeds of
10 mph (8-9 knots) or less (Bauder, 2000; Duble, 2013). Naturally, these losses are further exacerbated if even the
water that hits the ground completely misses its target, which is a common occurrence for the relatively small yards
in our research area.
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Table 7: Wind events by watering frequency and week type

2008 2010 All
weekly

watering % % % % % %
days windy very windy windy very windy windy very windy

schedule-based
2 57.02% 21.40% - - 57.02% 21.40%
3 52.32% 19.50% 48.82% 18.09% 50.00% 18.57%
4 52.21% 19.37% 48.58% 17.66% 50.78% 18.69%
>4 46.75% 15.29% 47.09% 17.34% 46.92% 16.32%

Total 51.71% 18.58% 48.08% 17.72% 50.06% 18.19%

off-schedule
2 50.68% 19.08% 47.73% 18.38% 48.83% 18.65%
3 48.65% 16.60% 46.94% 17.67% 47.63% 17.24%
4 49.51% 17.18% 46.99% 17.25% 48.07% 17.22%
>4 47.40% 15.14% 46.58% 16.42% 46.94% 15.85%

Total 49.14% 17.09% 47.11% 17.57% 47.94% 17.37%

all
2 55.44% 20.82% 47.73% 18.38% 53.18% 20.11%
3 50.85% 18.34% 48.20% 17.95% 49.15% 18.09%
4 51.35% 18.67% 47.80% 17.46% 49.70% 18.11%
>4 46.86% 15.27% 46.99% 17.16% 46.93% 16.23%

Total 51.00% 18.17% 47.70% 17.66% 49.35% 17.91%

8. Conclusion

This study is the first to examine how the design of outdoor watering restrictions impacts
residential water use at the household level. Using a unique, customer specific data set of daily
consumption over multiple irrigation seasons that include an inter-season policy change, we arrive
at several important and novel findings. Most centrally, both the cap on weekly frequency and the
address-based assignment of specific watering days matter for conservation outcomes. While the
former is confirmed to be necessary for curbing consumption, the latter undermines conservation
goals.

We find that higher frequencies unambiguously translate into higher weekly use. However,
we uncover an unintended consequence of OWRs with days-of-week assignments: weekly use and
peak are higher the more closely a given households follows the assigned schedule. These “rigidity
penalties” are substantial and amount to approximately 20-25 percent of weekly consumption and
30-40 percent of weekly peaks.

The policy change from two to three assigned days per week produced two main effects. First,
it induced the intended switch in watering patterns for a considerable segment of customer-weeks.
Second, we observe a pronounced reduction in peaks at the system-wide level - an effect driven
predominantly by lower peaks for schedule-based weeks. In contrast, overall weekly use changes
little in reaction to the new policy.
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Table 8: Random Effects Probit Estimation of Daily Watering Decision (translated into Marginal Effects)

2008 2010

weekly frequ. = 2 (n = 135,044)
coeff. s.e. z

windy 0.074 0.004 17.870
windy*SB 0.049 0.004 12.070
avg. temp. 0.011 0.000 25.190

weekly frequ. = 3 (n = 74,417) weekly frequ. = 3 (n = 132,167)
coeff. s.e. z coeff. s.e. z

windy 0.033 0.005 6.290 windy 0.003 0.004 0.670
windy*SB 0.053 0.005 9.900 windy*SB 0.013 0.004 3.030
avg. temp. 0.005 0.001 8.380 avg. temp. 0.001 0.000 2.730

weekly frequ. = 4 (n = 57,435) weekly frequ. = 4 (n = 50,176)
coeff. s.e. z coeff. s.e. z

windy 0.055 0.006 8.510 windy 0.000 0.006 0.070
windy*SB 0.053 0.006 8.430 windy*SB 0.016 0.006 2.470
avg. temp. 0.009 0.001 12.310 avg. temp. 0.001 0.000 1.450

For policy-makers, our results suggest that adjusting existing OWRs to allow for flexible wa-
tering patterns could produce substantial water savings at relatively low implementation costs.
Moreover, as inefficiency penalties are highest at low frequencies, our findings also cast doubt on
the effectiveness of policies that reduce the number of assigned days under progressively severe
drought conditions. In such situations, a frequency reduction combined with a “free-to-choose”
policy is likely to promote greater conservation. Naturally, violations of allowed weekly frequencies
would be more difficult to detect under such a policy, since permissible applications would no longer
be pegged to a given day-of-week for a given address. However, the fact that many current cus-
tomers adhere - at least loosely - to the official regulations despite weak enforcement by the utility
suggests that social norms and “neighborly supervision” may be stronger drivers of compliance
than officially posted fines. These norms would still be in force under more flexible policies, as
nearby neighbors can easily keep track of other households’ weekly watering frequency.

Our analysis extends prior work exploring the unintended consequences of nested policies, and
those that introduce heterogeneous standards across firms and/or regions. Whereas the extant
literature focuses on leakages generated by the spatial reallocation of effort, our paper highlights
another channel through which leakages may arise - by hampering the temporal reallocation of
effort. In our setting, adherence to the official watering schedule requires households to ignore
time-varying weather patterns that reduce the efficacy of outdoor watering.

It is easy to envision other domains where similar patterns could arise. For example, many
utilities have explored time-of-day pricing as a means to manage residential energy consumption
and associated greenhouse gas emissions. To the extent that such pricing schemes cause a shift in
demand from peak to non-peak hours, the overall impact on carbon could fall short of expectations
as the marginal fuel source during peak hours is often less carbon intensive than base load generators
(the marginal fuel source during non-peak periods). The identification of such temporal leakages
and the design of policies that are robust to such unintended consequences should provide ample
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opportunities for future research.
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Appendix A. Outdoor watering restrictions in the United States
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Appendix B. Evidence against confounding effects

If there were any other time-varying factors that drive water need in a heterogeneous fashion we
should see pronounced variation over time in the fraction of different watering types. Table B.10
shows, for each week of our research period, the number of households included in the sample, and
the percentage of watering types. The last two columns of the table capture the two types we use
in our empirical model, SB and OS. For additional insight, we also show the percentage, of the
total sample, of perfectly compliant types, or S types (which are nested within SB). We further
split these S types into the percentage of household-weeks (HWs) that come from households that
always follow the schedule (labeled as “always” in the table), and the remaining share of HWs
contributed by “occasional” perfect compliers (labeled as “occ”) in the table.

Table B.10: Percentages of watering types over time

S
week sample always occ. total SB OS

2008
1 8468 12% 15% 28% 60% 40%
2 8270 13% 16% 29% 61% 39%
3 8572 12% 16% 28% 64% 36%
4 2488 9% 15% 24% 58% 42%
5 3163 9% 15% 25% 60% 40%
6 5825 10% 16% 26% 59% 41%
7 7774 12% 17% 29% 62% 38%
8 7235 12% 14% 26% 66% 34%
9 871 14% 16% 30% 63% 37%

2010
1 5765 9% 14% 24% 38% 62%
2 7338 9% 15% 24% 43% 57%
3 1853 9% 15% 24% 47% 53%
4 7317 9% 17% 26% 48% 52%
5 7420 9% 18% 27% 48% 52%
6 6074 9% 19% 28% 50% 50%
7 5512 9% 18% 27% 44% 56%
8 7294 9% 18% 27% 47% 53%

SB = schedule-based (all assigned days are used)
OS = off-schedule (not all assigned days are used)

S = schedule-exact, perfect compliance
S / always = from households that always show perfect compliance

S / occ. = from households that occasionally show perfect compliance

As can be seen from the table, there are no pronounced shifts in the proportion of type as-
signments over time. This puts in question the proposition that a substantial share of OS types
become SB types due to a systematic weekly shock that affects water need. Table 2 in the main
text and table B.10 combined also show that the hottest weeks in 2008 (week 3) and 2010 (week
4) do not produce the highest proportion of S or SB types in the overall watering pattern.

It is also obvious from B.10 that perfectly compliant HWs, or S types constitute the minority of
SB types in any given week. Most HWs that are SB have a watering pattern that adds one or more

26



days to the official schedule. In other words, they are already cheating to some extent. Throughout
our analysis we compare SB types and OS types conditional on the same weekly frequency. This
means that an OS type cheats just slightly more than an SB type of the same frequency. Therefore,
the probability of detection and fines should not be all that different between the two types.

Furthermore, if the “behave to avoid fines when water needs are high” conjecture were to hold,
we would expect to see higher use for S types compared to one-off SB types. For example, in 2008,
an S type would water exactly twice. We can then compare the resulting weekly use to that of an
SB− 3 type that uses one additional day. In the same vein, we can compare an S type for 2010 (3
allowable watering days) to an SB − 4 type. In both cases we would expect use to increase under
the S regime under the conjecture.

However, as is evident from Figure B.3, the one-off SB types use more water than perfect
compliers and have comparable peaks to S types in both years. This picture is more consistent
with the notion that when a households needs more water, it simply adds an additional day. This
directly contradicts the “revert to S when need is high” hypothesis.

2008 2010

Weekly Use

w
ee

kl
y 

us
e 

(1
00

0 
ga

ls
.)

0
2

4
6

8

2008 2010

Weekly Peak
w

ee
kl

y 
pe

ak
 (

10
00

 g
al

s.
)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

S SB3 OS3

se
q(

1,
 1

0)

S SB4 OS4

Figure B.3: Weekly Use and Peak for S and “one-off” Types

27



Appendix C. Identification of outdoor watering days

Our identification of outdoor watering days thus proceeds in the following steps:

1. We start with a simple K-means clustering algorithm (MacQueen, 1967) at the household level
to classify each day as a “high use” or “low use” occurrence. Our objective is to confidently
interpret high use days as days with outdoor irrigation, and low-use days as days with strictly
non-irrigation consumption. We use six different clustering algorithms. The first three are
based on actual daily use, the second set of three on logged use.22 Within each set, the first
algorithm uses the Euclidean distance between observation points and the current pair of
cluster centroids as a sorting criterion, the second uses Euclidean distance squared, and the
third absolute distance (Vinod, 1969; Massart et al., 1983). In each case we use the mean
consumption on assigned and unassigned days, respectively, as starting values for the cluster
centroids.

We find that within each triplet all three algorithms agree on sorting for every single ob-
servation in both the 2008 and 2010 data sets. This indicates robustness to the choice of
similarity measure, which is reassuring. As expected, the versions based on logged use, which
are less sensitive to outliers and thus lower the threshold for observations to fall into the
higher category, identify about 10-15 percent more observations as watering days than the
versions based on actual use in gallons in each data set.

However, all six versions are in complete agreement for all daily observations associated with
1644 (18.8 percent) of households in 2008, and 890 households (11.7 percent) in 2010. These
are likely customers that exclusively water via automated sprinkler systems, producing very
pronounced differences in usage between irrigation and non-irrigation days. Within these
subgroups, the sorting into watering and non-watering days perfectly aligns with assigned
watering days for 604 (6.9 percent) of customers in 2008, and 422 (5.5 percent) of customers
in 2010. For these households we can be especially confident that the observations flagged
as non-watering days truly and exclusively capture indoor, or non-irrigation, use. In the
following, we label these households as “Full Agreement, Full Compliance” (FAFC) cases.

An inspection of sample statistics on basic building and lot characteristics assures us that
these FAFC cases are not systematically different in measurable ways from the remainder of
the data set.23 Thus, we deem them suitable as a representative sub-sample that provides
reliable and important information on non-irrigation use.

2. Our next goal is to utilize information on winter use and the fact that the Reno / Sparks
climate precludes any water use for outdoor irrigation during the cold season to validate the
cluster analysis results. Specifically, using available data on monthly consumption during
the January-March period preceding our summer data collections, we compute average daily
winter use and the ratio of daily summer use to average daily winter use for each household
in both data sets. Focusing again on the FAFC observations, we then inspect the sample
distribution of this ratio for unassigned days. For 2008, the mean and standard deviation
for this ratio amount to 2.3 and 2.4, respectively. For 2010, the mean equals 1.85, and the

22We add an increment of one gallon to each zero-usage observation before taking logs
23These comparison tables are available from the authors upon request
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standard deviation is 1.7. According to TMWA, indoor use is higher in summer for the typical
household due to factors such as a larger average daily household size as school and college-age
children spend more time at home, a higher level of outdoor and athletic activities, increasing
water use for drinking, cleaning, laundry, and showers, increased use for the watering of indoor
plants, and water use for cooling units. The lower average for 2007 is likely due to the slightly
cooler summer that year, as described in the main text.

3. We interpret the above results as indicative of the typical household in the Reno / Sparks
area consuming approximately twice as much water per day for non-irrigation purposes in
summer than in winter. Based on the standard deviations for the FAFC segment given above,
we would further expect daily non-irrigation use for any household not to exceed a ratio to
winter use in excess of 3 ∗ 2.4 = 7.2 in 2008 and of 3 ∗ 1.7 = 5.1 in 2010.

4. For our final classification step we generally adopt the cluster analysis results based on ab-
solute use, but we recode all observations flagged as “non-watering” days that exceed the
three-standard deviation thresholds given above as “watering days”. This results in 19,479
changes (8.2 percent of observations originally flagged as non-watering) for the 2008 data,
and 17,818 changes (8.6 percent of observations originally flagged as non-watering) for the
2010 set. These recoded observations are likely associated with households that employ some
daily baseline watering system, as mentioned above. Due to the latency of the baseline irriga-
tion the cluster analysis fails to identify these non-sprinkler days as irrigation days. Adding
information on winter use to our analysis allows us to correct this shortcoming.

29



Appendix D. Details on Econometric Specification and Results

The household and climate regressors in the frequency equation are: log of lot size in square
feet (“lnland”), log of tax-assessed land value (“lnvalue”), the weekly average of, respectively, daily
minimum and maximum temperature (“mintemp”, “maxtemp”), the weekly average of daily aver-
age wind in knots (“avgwind”), the weekly average of maximum daily sustained wind (“maxwind”),
and total weekly growing degree days (“gdd”). For a given calendar day, the latter is computed
as (maximum daily temperature + minimum daily temperature)/2-50. All climate indicators are
measured in units of 10 for a more balanced scaling of the regressor matrix.

Equations two (weekly use) and three (weekly peak) include the additional home features log of
square footage (“lnsf”), number of bedrooms, number of water fixtures, and age plus age squared.
The dropped climate variables (for identification purpose) are “mintemp”, “maxtemp”, and “gdd”.

The full results for equations two and three are given in TableD.11.
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Table D.11: Estimation results for use and peak equations, Bayesian model

weekly use weekly peak

mean std. prob(>0) mean std. prob(>0)

constant -10.766 (0.773) 0.000 -12.706 (0.766) 0.000
freq1 0.392 (0.025) 1.000 0.883 (0.026) 1.000
freq2 0.584 (0.025) 1.000 0.980 (0.026) 1.000
freq3 0.720 (0.026) 1.000 0.989 (0.027) 1.000
freq4 0.821 (0.029) 1.000 0.992 (0.031) 1.000

freq567 0.967 (0.036) 1.000 1.048 (0.036) 1.000
SB * freq2 0.208 (0.066) 1.000 0.379 (0.068) 1.000
SB * freq3 0.197 (0.066) 0.999 0.334 (0.068) 1.000
SB * freq4 0.179 (0.068) 0.995 0.307 (0.071) 1.000

SB * freq567 0.200 (0.071) 0.999 0.233 (0.072) 0.999
lnland 0.389 (0.010) 1.000 0.439 (0.011) 1.000

lnsf 0.170 (0.033) 1.000 0.154 (0.036) 1.000
lnvalue 0.294 (0.028) 1.000 0.344 (0.030) 1.000
fixtures -0.002 (0.003) 0.324 -0.005 (0.004) 0.079

bedrooms 0.042 (0.009) 1.000 0.032 (0.009) 1.000
age 0.218 (0.011) 1.000 0.280 (0.012) 1.000
age2 -0.020 (0.001) 0.000 -0.025 (0.002) 0.000

avgtemp 0.051 (0.081) 0.735 -0.007 (0.079) 0.470
avgwind -0.070 (0.453) 0.442 -0.064 (0.462) 0.453
maxwind 0.050 (0.184) 0.615 0.008 (0.188) 0.506

avgwind * SB -0.222 (0.563) 0.349 0.002 (0.575) 0.500
maxwind * SB 0.032 (0.199) 0.567 -0.058 (0.204) 0.386

year2010 0.185 (0.740) 0.593 -0.178 (0.730) 0.403
freq1 * 2010 -0.010 (0.036) 0.393 -0.009 (0.036) 0.385
freq2 * 2010 0.034 (0.035) 0.837 0.073 (0.035) 0.978
freq3 * 2010 0.045 (0.036) 0.895 0.071 (0.036) 0.977
freq4 * 2010 0.053 (0.041) 0.901 0.092 (0.041) 0.990

freq567 * 2010 0.038 (0.049) 0.786 0.064 (0.048) 0.909
SB * freq3 * 2010 -0.052 (0.144) 0.361 -0.257 (0.147) 0.039
SB * freq4 * 2010 -0.049 (0.146) 0.357 -0.244 (0.150) 0.049

SB * freq567 * 2010 -0.041 (0.147) 0.395 -0.200 (0.151) 0.088
avgtemp * 2010 -0.025 (0.082) 0.391 0.016 (0.080) 0.583
avgwind * 2010 0.333 (0.486) 0.76 0.515 (0.500) 0.848
maxwind * 2010 -0.109 (0.187) 0.258 -0.143 (0.192) 0.240

avgwind * SB * 2010 -0.020 (0.063) 0.372 -0.033 (0.065) 0.304
maxwind * SB * 2010 0.010 (0.021) 0.688 0.021 (0.021) 0.837
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Appendix E. Independent Random Effects Regressions

If the random household effects were not correlated across the three equations, the parameters
in the use and peak models could in theory be consistently estimated via simple, independent
random effects regressions. For the coefficients in the mean function consistency in such a näıve
independent framework would hold even if equations two and three were correlated, as long as their
respective correlations with equation one is truly zero. This is because the dependent variable of
equation one, weekly watering frequency, enters the other two equations on the right hand side
(in form of binary indicators), and would thus cause endogeneity problems if there existed a link
between equation one and the other two models via the unobservable household effects.

From Table 5 in the main text we see that ρ13 is negligible with large posterior uncertainty,
but ρ12, while small, is positive and estimated with relatively high precision. To examine to what
extent ignoring this correlation would affect parameter estimates, we run two independent random
effects (RE) regressions for weekly use and peak with the exact same regressors as in our Bayesian
Hierarchical Exponential (HE) models. The dependent variables are in log-form.

If endogeneity is not an issue, the two frameworks, Bayesian HE, and classical RE, should
produce asymptotically identical results for the following reasons: (i) both are based on the same
log-linear parameterized mean function, which assures the same interpretation for marginal effects,
(ii) the normal density, which forms the basis for the RE regressions, and the exponential density
which underlies the HE model, are both in the family of linear exponential distributions. Therefore,
a mis-specification of the (combined) variance of error terms in the likelihood function should not
affect consistency of coefficient estimates in the parameterized mean function (see e.g. Cameron
and Trivedi, 2005, ch.5), and (iii) while the RE regression has an additional normally distributed
idiosyncratic error, both preliminary runs of an expanded Bayesian model and the RE results
indicate that the variance of that error term is small compared to the variance of the household
effect.24 Finally, with over 100,000 observations, we would expect good asymptotic properties from
both frameworks.

Table E.12 depicts the full results for the RE regressions. Comparing these results to the
posterior means in Table 1, we see that the RE models systematically under-estimate the incre-
mental increase in use and peak at any frequency for SB-type weeks (variables “SB*freq2” through
“SB*freq567”). Expressed in percentage terms, this bias is of considerable magnitude, ranging from
7-11% for use and 15-21% for peak. Furthermore, the RE models estimates pure policy effects for
use peak (“year2010”) that are 30-40% larger, respectively, than the small effects produced by the
correlated Bayesian system.

Finally, the RE model under-estimates the reduction in peak for SB-types compared to 2008
(“SB*freq3*2010” through “SB*freq567*2010”) by approximately 5%. We thus conclude that the
additional complexitities in estimation from switching to a fully correlated triple-equation system
are justified for our application.

24The RE output indicates that 82-86% of total error variability is assigned to the household effect.
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Table E.12: Estimation results for the independent RE regressions

weekly use weekly peak

mean std. mean std.

constant -8.039 (0.255) *** -10.186 (0.301) ***
freq1 0.457 (0.006) *** 0.870 (0.008) ***
freq2 0.669 (0.006) *** 0.980 (0.008) ***
freq3 0.818 (0.007) *** 1.026 (0.008) ***
freq4 0.935 (0.008) *** 1.056 (0.009) ***

freq567 1.076 (0.009) *** 1.118 (0.011) ***
SB * freq2 0.101 (0.015) *** 0.186 (0.019) ***
SB * freq3 0.099 (0.015) *** 0.151 (0.019) ***
SB * freq4 0.089 (0.016) *** 0.116 (0.019) ***

SB * freq567 0.136 (0.016) *** 0.093 (0.020) ***
lnland 0.426 (0.009) *** 0.482 (0.009) ***

lnsf 0.258 (0.027) *** 0.266 (0.030) ***
lnvalue 0.134 (0.019) *** 0.176 (0.022) ***
fixtures 0.005 (0.003) *** 0.001 (0.003)

bedrooms 0.021 (0.007) *** 0.012 (0.008)
age 0.019 (0.001) *** 0.025 (0.001) ***
age2 0.000 (0.000) *** 0.000 (0.000) ***

avgtemp 0.011 (0.002) *** 0.007 (0.002) ***
avgwind -0.026 (0.011) *** -0.020 (0.013)
maxwind 0.015 (0.004) *** 0.010 (0.005) *

avgwind * SB -0.014 (0.013) -0.003 (0.016)
maxwind * SB 0.002 (0.004) -0.003 (0.006)

year2010 0.530 (0.174) *** 0.288 (0.215)
freq1 * 2010 -0.004 (0.009) 0.007 (0.011)
freq2 * 2010 0.013 (0.009) 0.040 (0.011) ***
freq3 * 2010 0.015 (0.009) 0.045 (0.011) ***
freq4 * 2010 0.026 (0.010) ** 0.063 (0.013) ***

freq567 * 2010 0.006 (0.012) 0.031 (0.015) **
SB * freq3 * 2010 -0.002 (0.033) -0.164 (0.041) ***
SB * freq4 * 2010 -0.005 (0.034) -0.147 (0.042) ***

SB * freq567 * 2010 -0.009 (0.034) -0.128 (0.042) ***
avgtemp * 2010 -0.007 (0.002) *** -0.004 (0.002) *
avgwind * 2010 0.043 (0.012) *** 0.051 (0.014) ***
maxwind * 2010 -0.019 (0.005) *** -0.021 (0.006) ***

avgwind * SB * 2010 -0.021 (0.015) -0.027 (0.018)
maxwind * SB * 2010 0.009 (0.005) ** 0.016 (0.006) ***
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