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Abstract

Feedback is an effective tool for promoting efficient behavior: it enhances individuals’

awareness of choice consequences in complex settings. Our study aims to isolate the

mechanisms underlying the effects of feedback on achieving efficient behavior in a con-

trolled environment. We design a laboratory experiment in which individuals are not aware

of the consequences of different alternatives and, thus, cannot easily identify the efficient

ones. We introduce feedback as a mechanism to enhance the awareness of consequences

and to stimulate exploration and search for efficient alternatives. We assess the efficacy of

three different types of intervention: provision of social information, manipulation of the fre-

quency, and framing of feedback. We find that feedback is most effective when it is framed

in terms of losses, that it reduces efficiency when it includes information about inefficient

peers’ behavior, and that a lower frequency of feedback does not disrupt efficiency. By

quantifying the effect of different types of feedback, our study suggests useful insights for

policymakers.

Introduction

A robust finding in economics, psychology, and behavioral sciences is the systematic failure to

act according to rational well-informed preferences [1]. This failure to rationally process and

integrate information due to limited cognitive resources may lead to inefficient behavior in

many domains of everyday life and may produce costs that, in some cases, can be avoided sim-

ply by highlighting the consequences of such behavior.

Individuals make a huge number of choices every day that, in most cases, are implicit and

can lead to suboptimal outcomes. Potential reasons might be habit formation and unawareness

of the consequences of alternative courses of action. A prominent example of unawareness of

the consequences of alternative courses of action are savings and investment decisions. In

retirement saving decisions, for instance, investors are relatively passive and do not spend time

collecting information. They often abstain from joining advantageous plans, they tend to stick

to the default option and do not explore new alternatives that may lead to more efficient

choices [2]. Suboptimal behaviors may lead actual workers to not save enough, which may

result in a generation of future poor pensioners. For this reason, regulators and policy makers
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have implemented strategies for sustaining workers’ investment into retirement plans. Often

these strategies include automatic enrolment [3] or the information about about peer behavior

on savings. With respect to the latter, Duflo and Saez (2000, 2003) [4] [5] found that it is effec-

tive at increasing individual likelihood to enrol into a retirement saving plan. Whereas, more

recently, Beshears et al. (2015) [6] found that it has a negative impact on retirement saving

rates of those who are not saving enough.

Another example of suboptimal decisions due to a lack of awareness of the consequences of

alternative courses of action is domestic electricity consumption. Electricity consumption is

one of the most debated cases in which habits lead to individually and socially inefficient deci-

sions. In this case, alternative courses of action are not salient to the consumer who undertakes

consumption without well-informed preferences. Indeed, when individuals consume a given

amount of KWh by using the most disparate appliances, they are certainly better off but, at the

same time, they may fail to properly assess the costs and benefits associated with their choices

and with alternative behaviors. The difficulty to assess choice consequences for this type of

good lies in the fact that consumers are not directly concerned about consuming electricity

that, as Fischer (2008) [7] points out, is invisible and partially outside their control. Real

attempts of driving electricity consumers towards a virtuous behavior are those implemented

by some companies which, together with the electricity bill, send a detailed report in which the

consumption of the household is compared to the one of the neighbors (see [8] for a discussion

of a real life situation). Unfortunately, also in this real example, results on how individuals

react to received information about peers’ behavior (in this case on energy consumption) are

not clear-cut (see, for instance, [9] and [8] on the so called boomerang effect).
Unawareness of consequences may also lead to poor choices not only in saving or consump-

tion but also in other domains. For example, cars nudge drivers when they have to change gear,

insert the neutral gear or use the clutch pedal. Advanced vehicle computers keep track of driv-

ers’ performances and summarize how many kilograms of CO2 (or litres of gas) the driver

saved. Without these mechanisms, drivers would be satisfied with their suboptimal behavior,

ignoring the existence of a better driving style which is implementable through small changes.

In all these settings, the decision-makers’ inability to make efficient choices plays a crucial

role. As already pointed out, the lack of awareness of the consequences of alternative courses

of action may lead to individuals being more exposed to cognitive biases, and individuals may

settle for satisfying (but inefficient) behavior. By stopping the search for better alternatives,

they might lose the opportunity to join an advantageous pension plan, to gain additional bene-

fits from changing their driving style or to reduce additional losses from efficiently consuming

electricity.

A powerful and affordable strategy that can enhance awareness of choice consequences and

foster the search for efficient alternatives is feedback. Feedback enables us to fill a “knowledge

gap” that individuals face when they cannot access the level and the rate of their behavior,

thus, it stimulates the exploration of behavioral alternatives and search for the most efficient

one [10].

In this study, we enrich the literature on feedback and efficiency by providing laboratory

evidence on the mechanisms underlying the feedback effects on efficient behavior. In particu-

lar, we investigate how different types of feedback, including social information and framing

effects, enhances awareness of behavior consequences and stimulates exploration.

Related literature

Research on the effectiveness of feedback on behavior change has a long history in psychology

and behavioral economics. By providing individuals with information about the consequences
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of their past behavior, feedback represents a powerful strategy for enhancing learning and bet-

ter performance [11, 12].

In the consumer research literature, the role of feedback has mainly been investigated in

terms of the effects of knowledge of results [13–15]. Providing information about past perfor-

mance enhances individuals’ learning of consequences and, thus, better consumption deci-

sions [16–18].

In the literature on learning, feedback is identified as a mechanism that causes a change in

behavior such that decisions might converge to efficiency. This line of research has typically

employed laboratory experiments in which subjects face the same task repeatedly without prior

information about options’ payoff distribution and receive a feedback after each choice [19].

This task is usually a choice under uncertainty between (at least) two options in the so-called

clicking paradigm. Often these experiments involve small feedback-based decisions, which are

characterized by i.) repeated decisions, ii.) small importance of each single decision, and iii.)

unawareness of a prior information concerning the payoff distributions (see, for instance, [20]).

Learning research evidence suggests that the effect of experience on choice behavior depends

on the type of feedback received, with different types of feedback leading to different processes

[21]. In particular, the effect of feedback about obtained payoff is captured by reinforcement

learning models: agents are assumed to evaluate their choices by looking only at obtained pay-

offs. While the effect of feedback about foregone payoffs, i.e., the payoff that could have been

received by selecting another action, is captured by beliefs-based learning models: agents are

also assumed to incorporate foregone payoffs in the learning process [22]. Some evidence sup-

ports beliefs-based learning models: when feedback contains also foregone payoff, the probabil-

ity of re-evaluating disappointing options increases [21]. This positive effect on learning is

observed especially when the decision-making context has low variance, there are several alter-

natives, and payoffs associated with the different options are positively correlated [22].

Despite this evidence, in many natural settings individuals receive a feedback limited to the

payoff obtained by selecting an option, as depicted by reinforcement learning models. In these

settings, individuals have to explore to learn the incentive scheme by looking at obtained

payoff.

Laboratory evidence from the learning research field suggests that a change in feedback

about obtained payoff may enhance learning and better performance. In particular, when the

frequency of feedback about obtained payoff is high, it has a positive effect on learning and per-

formance [23, 24]. Similarly, the literature on reinforcement learning suggests that when the

frequency of feedback is reduced (partial reinforcement), it has a negative effect during acqui-

sition—i.e., in the learning phase when behavior is reinforced—and a positive effect in the

extinction phase—i.e., when the behavior is not reinforced anymore [25]. This effect, which is

known as the partial-reinforcement extinction effect, suggests that even though learning is

slower, learned behavior is more robust under partial reinforcement compared to continuous

reinforcement. Despite this evidence, it is not clear whether a higher frequency of feedback has

a positive effect on learning. In particular, Lam et al. (2011) [26] show that when feedback is

too frequent it has a negative effect on learning and performance in the early phases of learn-

ing. This effect can be related to information overload: as feedback frequency increases, indi-

viduals use available cognitive resources to process feedback information instead of using

them to learn the task.

Feedback containing others’ obtained payoff (which can also introduce foregone payoffs)

might also have a positive effect on learning and efficiency [27]. Social learning literature sug-

gests that agents draw inference from others’ choices in settings characterized by uncertainty

[28]. In these settings, providing feedback about their own and others’ obtained payoff invokes

a social comparison that elicits a positive behavioral change [29, 30].

Feedback and efficiency
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Finally, there is evidence that when feedback includes losses it has a positive effect on learn-

ing and efficiency. This effect has been attributed to the phenomenon of loss aversion [31], i.e.,

under loss aversion individuals assign higher subjective weight to losses than to gains [32], and

also to the fact that losses stimulate task attention [33]. In this regard, the positive effect of

losses on performance has been questioned in artificial settings. For instance, [34] is a replica-

tion of the field study of Ganzach and Karsahi (2005) [35] aimed at validating the efficacy of

losses on efficient credit card use also in artificial environments. The authors do not find that

losses have a positive effect on behavior, advocating that in artificial environments subjects are

less involved than in natural settings and, thus, are less willing to process information opti-

mally. Although our experiment is an artificial environment, our subjects are guaranteed to be

highly involved by taking part in incentivized tasks (see Induced Value Theory [36]).

Several field studies have employed feedback as a mechanism to enhance efficiency in the

field of energy consumption [7, 37–41]. Other studies [8, 9, 42] tested the effect of social feed-
back on energy conservation and suggest that it is effective at increasing energy conservation.

On the other hand, a review of several studies published in the psychological literature [7]

shows that feedback containing social information elicits a mixed behavior change. To explain

this inefficacy, the author of the review refers to the boomerang effect: suboptimal consumers

might be motivated to change their consumption behavior toward the efficient one, while effi-

cient consumers might be exposed to the risk of worsening their behavior. As for the frequency

of feedback, there are studies suggesting that frequency has a positive effect on energy con-

sumption: the more frequent the feedback is, the higher the effect on learning choice conse-

quences [7, 43, 44]. The same studies [7, 44] suggest that framing is also crucial for stimulating

exploration and fosters search for better consumption alternatives. Conditional on how infor-

mation is framed, feedback can activate different motivations and, thus, behavior changes. In

particular, recent evidence shows that disclosing information about losses associated with con-

sumption motivates energy conservation [40].

The effect of feedback on energy efficiency has also been investigated in the laboratory by

simulating consumer behavior in a virtual home by asking subjects to consume energy by

using seven different groups of items [45]. In this paper, energy consumption is investigated

along five dimensions in which information changes. In the baseline, participants were

informed about the net gain associated with their consumption choices on an invoice screen.

Depending on the treatment, either they received some advice about energy saving before the

choice was made through a smart meter display or they received the average and minimum

energy consumption level in their market. Although this recent contribution, the effect of feed-

back on energy efficiency remains under-investigated in controlled environments.

Our study adds to the research on feedback and efficiency by providing laboratory evidence

on the mechanisms underlying its effects on behavior. We simulate the problem faced by an

individual who has limited awareness of the consequences associated with her choices. We

introduce feedback about obtained payoffs as a mechanism to enhance awareness of choice

consequences and the learning of better alternatives. We manipulate the social content, the fre-

quency, and the frame of feedback about obtained payoffs along six dimensions.

In addition, we add to the methodology of the learning research field by introducing a

novel task. Experimental subjects are provided with a task in which they have to choose how to

allocate experimental points to five items that convert these points into a final payoff according

to a function that is unknown to the subjects. As in the case of a decision-maker who has to

decide how to use her resources with limited knowledge of the consequences of different

courses of action—e.g., an investor that needs to decide how to invest her capital—our subjects

do not know how items convert points in the payoff but they have the opportunity to find

more efficient combinations through exploration.

Feedback and efficiency
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Our study also adds to the research on learning and feedback by highlighting two mecha-

nisms underlying feedback efficacy on learning and efficiency. The first finding relates to the

fact that feedback including losses elicits a substantial positive effect on learning and fosters

search for efficient alternatives. The effect of losses on performance is still underinvestigated in

the learning research and, thus, our result represents an original contribution to this literature.

The second finding adds to the social learning research and the controversial evidence on the

efficacy of social feedback. When feedback includes social information about an inefficient

best performer, it elicits a negative effect on learning and exploration.

Finally, our study provides useful insights for policymakers by quantifying the effect of dif-

ferent types of feedback on efficiency.

Materials and methods

We design an experiment that mimics the problem faced by an individual who has limited

awareness of the consequences of her choices and potentially forgoes additional benefits by

undertaking poor behavior. Our aim is to provide laboratory evidence on the mechanisms

underlying the feedback effects on the search for better alternatives and awareness of choice

consequences by manipulating three dimensions of feedback: framing, frequency of delivery,

and social content.
We investigate individual behavior as performance in a repeated allocation task of points to

various items: experimental subjects are asked to simultaneously use five sliders by choosing

the amount of points to allocate to each. Participants cannot assess the benefits and costs asso-

ciated with their allocation choices. Therefore, we introduce feedback as a way to enhance

awareness of choice consequences and to foster the search for more rewarding allocations. Par-

ticipants are told that only one allocation is efficient, i.e. is the most rewarding.

Participants earned the points they are asked to allocate to the sliders through an effort task.

This task controls for the effect of experimental asset origin. While windfall assets have been

associated with several behavioral anomalies, asset earned through effort has been associated

with higher self-interested behavior [46]. The effort task was based on [47]. Participants had 50

minutes to correctly count the number of zeros in 21 different tables with 150 randomly

ordered zeros and ones. In our experiment, participants earned 50 points for each correctly

solved table. Moreover, they were informed that they could proceed to the allocation task only

upon the successful completion of all the 21 tables in the effort task. All participants managed

to complete the 21 tables and, therefore, at the end of the effort task, they earned 1,050 points.

Individual cognitive ability might confound performance in the allocation task. Therefore, to

determine a measure of individual ability, we recorded the time individuals needed to com-

plete the effort task.

In the allocation task participants were asked to allocate to five different sliders j 2 {1, . . ., 5}

the points (1,050) they had earned from completing the effort task. They were told the task

would be repeated for 21 rounds. In each round, participants had to allocate 50 of the 1,050

points by deciding the number of points xj 2 {0, . . ., 20} to assign to the j-th slider. Participants

were required to use all the available points and were allowed to allocate a maximum of 20

points to a single slider.

The first dimension of feedback that we manipulated is the framing of information: when

framing was positive, feedback included obtained payoff as benefits: the j-th slider generated a

payoff πj(xj) that depended on the number of points xj allocated to that slider according to the

Feedback and efficiency
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function

pjðxjÞ ¼ cj exp �
ðxj � mjÞ

2

2s2
j

 !

where:

• cj determines the slider’s maximum payoff,

• mj determines the number of points required for the slider’s maximum payoff and

• sj determines how fast the payoff decreases by moving away from the maximum.

The total payoff for the round was then computed as Pðx1; . . . ; x5Þ ¼
P5

j¼1
pjðxjÞ. Fig 1

shows the payoff functions and the parameters characterizing each slider.

Each slider’s payoff function was unknown to the participants, they only knew the mini-

mum and maximum attainable total payoffs (0 and 500 ECU, respectively).

When framing was negative, participants received a feedback including the obtained payoff

in terms of losses. This treatment allows us to assess the effect of losses on behavior: losses

increase task attention [33] and loom larger than same-sized gains [32]. In this treatment, the

j-th slider generated a loss (Cj(xj)) that depended on the number of points xj allocated to that

slider according to the function

CjðxjÞ ¼ cj 1 � exp �
ðxj � mjÞ

2

2s2j

 ! !

where:

• cj determines the slider’s maximum loss,

• mj determines the number of points required for the slider’s minimum loss (zero for all slid-

ers) and

• sj determines how fast the loss decreases by moving away from the maximum.

Obviously, the loss of each allocation is computed to keep the final payoff unchanged across

frames: Fig 2 shows the loss functions and the parameters characterizing each slider in the neg-

ative framing. It is important to notice that when a slider generates a payoff of p in the gain

domain it generates exactly a loss of cj − p in the loss domain. To maintain the opportunity of

performance comparisons in different frames, at the beginning of each round participants

were endowed with 500 ECU and were informed of the losses associated with the chosen allo-

cation. The payoff was determined by subtracting the loss of the allocation from the endow-

ment of 500 ECU.

The second dimension of feedback that we manipulated is frequency. Participants received

information on the obtained payoffs either at the end of each round or every three rounds

(thus, only at the end of round 3, 6, 9, 12, 15, 18, and 21). The main difference is the quantity

of feedback received by each subject. Indeed, while the quality of feedback does not differ

among conditions, the quantity of feedback differs in that participants received feedback on

their past performance 21 times under the first frequency condition, and seven times under

the second one. Importantly, when participants received information every three rounds, they

were informed about the payoffs obtained from all the previous three rounds. This way, at

period 3, 6, 9, 12, 15, 18, and 21 the amount of information available to the participants was

the same across all conditions.

Feedback and efficiency
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The rationale for this manipulation is to explore whether aggregating the feedback over

multiple rounds is harmful for efficiency. On the one hand, continuous feedback might lead to

higher efficiency. On the other, continuous feedback provision might lead to information

overload and can be, very often, infeasible or unsustainable (e.g., for budget or technical con-

strains). Our manipulation allows us to shed light on the effect of information (dis)aggregation

on efficient performance. If diluted feedback has the same effect of continuous feedback then

this insight can be leveraged by policymakers, especially when continuous feedback provision

is costly. If diluted feedback does not harm individuals’ performances, it is possible to induce

the same level of efficiency at a lower cost by reducing the frequency of feedback.

By combining framing and frequency in a 2x2 design we obtain four experimental

treatments.

Fig 1. Sliders’ payoff functions.

https://doi.org/10.1371/journal.pone.0175738.g001
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• In Treatment straight-×1, the sliders generate payoffs and the participants receive feedback

every round.

• In Treatment straight-×3, the sliders generate payoffs and the participants receive feedback

every three rounds.

• In Treatment reverse-×1, the sliders generate losses and the participants receive feedback

every round.

• In Treatment reverse-×3, the sliders generate losses and the participants receive feedback

every three rounds.

Fig 2. Sliders’ cost functions.

https://doi.org/10.1371/journal.pone.0175738.g002
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We consider as our Baseline the Treatment straight-×1, thus the impact of our manipula-

tions on feedback can be detected by comparing straight-×1 with straight-×3 (for the frequency
dimension) and straight-×1 with reverse-×1 (for the framing dimension).

As a third experimental dimension, we manipulated the content of feedback by including

social information. Treatments on social content followed the basic structure of the baseline

straight-×1. In addition, we provided participants with information not only about their own

payoff and allocation choices in each round, but also with information about the payoff

obtained by another subject in each round to address a still open question in the literature. In

fact, experiments on imitation in learning from experience do not always find robust results.

Some works conclude that the learning process is faster in subjects that may observe others’

performances [48], others claim that personal experience triggers learning better than

observed experience [49]. In a comprehensive review, Alos-Ferrer and Schlag (2009) [50] sup-

port the role of imitation in fostering efficient behavior. Studies on energy consumption [8, 9]

and saving behaviors [5, 6] do not converge to a clear conclusion on the effect of social feed-

back on performance. Therefore, the effect of disclosing a target individual’s performance on

observers’ behavior needs to be clearly addressed.

Our social feedback treatments are info-eff and info-ineff. In both treatments, participants

received feedback about the payoff obtained by the best-performer of a group of subjects that

participated in a pilot session of the baseline straight-×1. The pilot session was conducted to

collect data on best-performers. In this session, participants were arranged into groups of five

or six. In addition to receiving information about individual obtained payoffs, participants

were informed of the payoff obtained by the best-performer of their group. For the sake of

completeness, we compared performance in treatment straight-×1 and in the pilot treatment

without finding, on aggregate, any significant differences. This is not surprising given that dif-

ferent types of best-performers emerged from each group. The effects of providing heteroge-

neous social feedback cancel out each other.

The info-eff and info-ineff treatments differ in the best-performer’s category: in info-eff par-

ticipants were informed about the payoff obtained by an efficient best-performer, i.e., the best

performer of a group in which participants reached the efficient allocation; while in the info-
ineff participants were informed about the payoff obtained by an inefficient best-performer,

i.e., the best-performer of a group in which none reached the efficient allocation. Importantly,

participants in the info-eff and info-ineff were not informed of the best-performer’s category

(e.g., efficient or inefficient).

With these two additional treatments we want to tackle the effect of feedback embedding

social information, not only by testing whether observing the performance of an individual

considered among the best players sets the performances of the observers to higher levels, but

also by controlling whether the best performance represents a sort of benchmark which, once

reached, prevents exploration. Indeed, if information on the obtained payoff of a best-per-

former creates a reference point for the observers, setting this reference point to high (info-eff)
or low (info-ineff) levels may influence observers’ behaviors and performances. By construc-

tion, the main difference between the info-eff and info-ineff treatments is only the level at

which the reference point is set (high or low). Thus, participants in the info-eff treatment do

not receive a better feedback (feedback does not contain information on how the best-per-

former reached that specific result), but they are exposed to a higher reference point.

Table 1 summarizes our experimental treatments. All treatments were run in a between-

subjects design. To provide transparent incentives for the revelation of truthful behavior in

each round, one round was randomly selected to be paid out at the end of the experiment.

Feedback and efficiency
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Participants and procedures

The experiment was run at CEEL (Cognitive and Experimental Economic Laboratory) of the

University of Trento (Italy). Participants were students of the same university recruited among

the members of the laboratory database. The laboratory database contains only the entries of

those subjects who indicated their consent—those who signed the appropriate informed con-

sent paperwork—to voluntarily participate in experimental research in the domain of social

sciences. Thus, this experiment does not involve people unable to give informed consent, vul-

nerable individuals or minors.

As anticipated, participants knew that the research was in the domain of social sciences and

did not have any medical purpose or content. At the same time, they were aware that the data

collected would be treated anonymously and would be analyzed on aggregate without the indi-

vidual data being traced back to the originator. In addition, we informed participants that sen-

sitive personal data or genetic information would not be collected.

Participants were paid a participation fee (show-up fee) and a fee proportional to their

effort and results in the experiment, and this was made clear before the start of the experimen-

tal session. Within the experimental economics community experiments that fulfill these

requirements are usually conducted without an explicit IRB review. This is also the case of this

specific study.

Each experimental session was conducted on two subsequent days: the recruitment message

informed participants that they had to guarantee their availability on both days. The first day

was dedicated to the effort task (solved, on average, in 27.76 minutes) and the second to the

allocation task (one session lasted 60 minutes on average). Before starting the experiment, par-

ticipants received detailed instructions on the experimental procedure (see S1 File for a trans-

lated version of the instructions). As previously mentioned, participants were ensured a fair

earning from participating in the experiment: in addition to a show-up fee of 4 Euros, partici-

pants received the result of one randomly selected round of the allocation task. The exchange

rate was 25 ECU = 1 Euro. On average, individual total earnings amounted to 16.21 Euros.

The experiment was conducted using both the z-Tree software [51] (used for the effort

task) and a software developed at the laboratory (for the allocation task). In total, 162 partici-

pants took part in the experiment (if we also include the participants to the pilot, we have a

total of 209).

Results

In order to investigate how different types of feedback about obtained payoff enhance individ-

uals’ awareness of choice consequences and the search for better alternatives, we consider two

different measures of performance: (i) the round in which subjects reach the efficient alloca-

tion, and (ii) the fraction of rounds in which subjects make efficient allocation choices.

Table 1. Experimental treatments.

Treatment Frame Frequency Social content

straight-×1 Positive every round none

straight-×3 Positive every 3 rounds none

reverse-×1 Negative every round none

reverse-×3 Negative every 3 rounds none

info-eff Positive every round efficient best-performer

info-ineff Positive every round inefficient best-performer

https://doi.org/10.1371/journal.pone.0175738.t001
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There would be a third natural candidate measure of performance: the payoff obtained by

the subjects in the experiment. However, in our design payoffs are bounded between 0 and

500 ECU. Since many subjects hit the upper bound, this measure would not allow us to prop-

erly identify differences in performance among treatments. Indeed, performances tend to con-

verge at the end of the experiment when subjects progressively reach the efficient payoff. A

workaround to the problem is to employ a censored regression model to identify the effects.

However, this strategy implies that the dependent variable is censored and can theoretically

assume values above the threshold. This is not the case in our setting. Payoffs higher than the

efficient one have no meaningful interpretation and cannot be obtained. For this reason, we

provide only descriptive information on the payoff dynamic in the main text and test treat-

ment effects using the measures of performance mentioned above. For the sake of complete-

ness and transparency we report in Table A in S1 File the results of random effect censored

regression models where payoffs are used as dependent variable.

To analyze the first measure of efficient choices, i.e., the round in which subjects reach the

efficient allocation, we use a duration model, whereas to analyze the second measure, i.e., the

fraction of efficient choices, we employ a fractional response model. Compared to the OLS

regression with logit transformed data, the fractional response model has the advantage of nat-

urally allowing for observations with values of 0 and 1. For details about these models see [52]

and [53].

In the following, we describe the results with the aim to isolate and quantify the effect of the

three dimensions of feedback (framing, frequency, and social content) we manipulated in our

six treatments. In particular, we first discuss the impact of framing effects and the frequency of

feedback and we then move to the effect of social feedback.

Framing effects and frequency of feedback

In this subsection, we consider behavior in the treatments straight and reverse with feedback

every round (×1) and every three rounds (×3).

Fig 3 shows the average payoff by round and treatment. As is apparent from the figure, the

average payoff increases over rounds in all treatments and, in the final rounds, it reaches a

higher level in the reverse compared to the straight treatments. The average payoffs over the 21

rounds reflects this pattern. Their mean is 304.4 ECU (SD = 108.2) and 282.3 ECU

(SD = 106.1) in the straight-×1 and straight-×3 treatments and it is 320.7 ECU (SD = 147.9)

and 305.2 ECU (SD = 115.2) in the reverse-×1 and reverse-×3 treatments.

To have a clearer picture of the level of efficiency across treatments, we can look at Fig 4

which shows the fraction of subjects making efficient choices by round and treatment. From

Fig 4 we can observe that the frequency of efficient subjects reaches higher levels in the reverse
treatments compared to the straight ones. In the reverse treatments, 70% of the subjects reach

efficiency in the final round when the frequency of feedback is ×1, while 55% of the subjects

reach efficiency when the frequency of feedback is ×3. In the straight treatments, regardless of

the frequency of feedback, only 39% of the subjects reach the efficient allocation in the final

round. Both Figs 3 and 4 suggest that framing more than frequency of feedback drives the dif-

ference in performance among treatments.

To better identify which type of feedback is more effective at enhancing awareness of choice

consequences and the search for better alternatives, we ran regression models (Table 2). Model

1 is a fractional response probit model with the fraction of rounds in which subjects are effi-

cient as dependent variable, while Model 2 is a Cox proportional hazard model with the first

round in which subjects reach efficiency as dependent variable. Both models share the same

set of explanatory variables: (i) two treatment dummies, d(reverse) and d(×3), and their
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interaction d(×3) × d(reverse); (ii) a dummy variable controlling for gender d(female), (iii) the

average mark obtained in the exams (demeaned), and (iv) the time in minutes spent in the lab-

oratory to complete the real effort task.

Starting with the results of the fraction of efficient choices in Model 1, we confirm the

insight that a negative frame significantly fosters the search for an efficient allocation. In fact,

the variable d(reverse) is positive and significant. This shows that the expected fraction of

rounds in which subjects make efficient choices is higher in the reverse treatments than in the

straight ones. As a second result, the lack of significance of the variable d(×3) suggests that the

diluted frequency of feedback does not impact subjects’ performance. More precisely, the frac-

tion of efficient choices when feedback about obtained payoff is given every three rounds does

not differ from when it is given every round. This result shows that, in our task and over the 21

experimental periods, the continuous provision of feedback does not lead to better individual

performances. Finally, looking at the estimate of the term d(×3) × d(reverse) we can exclude

the presence of interaction effects between framing and frequency of feedback. Among the

control variables we find a weakly significant effect of the gender dummy, suggesting that the

fraction of efficient choices made by women is lower than that by men.

Moving to the results on the duration of the search before reaching the efficient allocation

in Model 2, we observe that the estimated parameter of d(reverse) is positive and significant.

This estimate implies that, in each round, the expected hazard of reaching the efficient

Fig 3. Average payoff by round and treatment.

https://doi.org/10.1371/journal.pone.0175738.g003
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allocation in the reverse treatment is 202% higher than the expected hazard in the straight one

(the estimated parameter implies an expected hazard ratio of 3.02). In other words, subjects

exposed to feedback including losses are significantly more likely to search for an alternative

efficient allocation compared to those exposed to feedback including benefits. Model 2 con-

firms that the diluted frequency of feedback has no significant effect on the number of rounds

needed to reach the efficient combination of allocation choices (d(×3) is not significant).

Finally, Model 2 confirms the effect of gender on search of efficiency: women show a lower

hazard of reaching the efficient allocation compared to men (47% lower).

Social feedback

In this subsection, we analyze the impact of social feedback on efficient behavior. Looking at

Fig 5, which reports the average payoff by round and treatment, we can see that in the second

half of the experiment payoffs are ranked as expected: the average payoff in the info-eff treat-

ment is higher than that in the straight-×1 treatment that, in turn, is higher than that in the

info-ineff treatment. Also, the means of the subject’s average payoff are ranked in the same

way, with a mean of 258.3 ECU (SD = 79.7) in the info-ineff treatment, 304.4 ECU

(SD = 108.2) in the straight-×1 treatment, and 326.3 ECU (SD = 108.1) in the info-eff
treatment.

Fig 4. Fraction of efficient choices by round and treatment.

https://doi.org/10.1371/journal.pone.0175738.g004
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Fig 6 shows the fraction of efficient choices by round and treatment and provides similar

insights into how feedback on the best performer’s obtained payoff affects behavior. We

observe that the fraction of efficient choices in the last rounds is 39% in the straight-×1 and

44% in the info-eff treatments, while it is only 18% in the info-ineff treatment.

These results suggest that feedback about the best performer’s payoff represents an anchor

for subjects that may reduce exploration and settle for a satisfying payoff level. Table 3 shows

results from an econometric test of this insight. Model 3 and Model 4 follow the specifications

of the two models reported in Table 2. More precisely, Model 3 is a fractional response probit

model with the fraction of rounds in which subjects are efficient as dependent variable, and

Model 4 is a Cox proportional hazard model with the first round in which subjects reach effi-

ciency as dependent variable. As for the dependent variables, these models differ from Models

1 and 2 only for the treatments dummies. The variables d(no info) and d(info ineff) capture the

effect of providing no information about the best performer’s obtained payoff and the effect of

providing information about an inefficient best performer compared to the case of providing

information about an efficient best performer.

Looking at the fraction of efficient choices in Model 3, we find that subjects informed about

the payoffs of an inefficient best performer show a significantly lower fraction of efficient

choices compared to those informed about the payoffs of an efficient best performer (d(info
ineff)). We also observe no significant difference in performance between subjects that do not

receive information and subjects that receive information about the efficient best performer (d

Table 2. Regressions’ estimates with s.e. in parentheses.

Mod. 1 Mod. 2

FRM probit Cox PH

(robust se) durat. mod.

(Intercept) −0.6321** —

(0.2070) —

d(×3) −0.0368 0.1004

(0.3028) (0.4896)

d(reverse) 0.7203** 1.1078**

(0.2535) (0.3882)

d(×3) × d(reverse) −0.5188 −0.6668

(0.4353) (0.6272)

d(female) −0.3699� −0.6364*

(0.2139) (0.3112)

exam_mark 0.0141 0.0496

(0.0353) (0.0567)

time_effort_task −0.0174 −0.0271

(0.0118) (0.0190)

R2 0.163 0.167

Concordance — 0.669

Signif. codes:

‘***’ p-value� 0.001

‘**’ 0.001 < p-value� 0.01

‘*’ 0.01 < p-value� 0.05

‘�’ 0.05 < p-value� 0.1

https://doi.org/10.1371/journal.pone.0175738.t002
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(no info)). These results show that the type of social content embedded in the information pro-

vided to the subjects is crucial for enhancing or inhibiting the search for better alternatives. In

particular, we observe that more information is not always better than less. While receiving

information on the payoff obtained by virtuous best-performers seems to have no impact on

performance, receiving information about inefficient ones seems to have a detrimental effect

on behavior. Among the control variables, the gender dummy is negative and weakly signifi-

cant, confirming the effect observed in the other treatments.

Looking at the number of rounds necessary to reach the efficient allocation in Model 4, we

observe that the estimated parameter of d(info ineff) is negative and significant. Therefore, the

hazard of reaching an efficient allocation when receiving information about the inefficient best

performer is lower than when receiving information about the efficient best performer (the

expected hazard is 68% lower). As a second result, we find no significant difference in the haz-

ard of reaching an efficient allocation when information on the obtained payoff is not provided

compared to when information on the payoff obtained by the efficient best performer is pro-

vided. Overall, the results obtained with the duration analysis confirm the results observed

when looking at the fraction of efficient choices: information on the payoff obtained by an

inefficient best performer reduces the likelihood to explore, i.e., measured in terms of an

increase in the number of rounds, the efficient allocation. As a final observation, we find a

Fig 5. Average payoff by round and treatment.

https://doi.org/10.1371/journal.pone.0175738.g005
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significant gender effect with women showing a lower hazard of reaching efficiency compared

to men (57% lower).

Discussion and conclusions

In this study, we investigated how different types of feedback enhance individuals’ awareness

of choice consequences and search for efficient alternatives. In particular, we focused on the

decision problem faced by an individual who has limited awareness of her choice

consequences.

To isolate and quantify the effect of feedback on behavior, we ran a laboratory experiment.

We exploited the laboratory setting to have internal control over the mechanisms underlying

feedback effects in a complex decision context, such as the one in which individuals are not

aware of their choice consequences.

We add to the methodology of the learning research field by introducing a novel task: in

our setting individuals are endowed with a fixed amount of points that when allocated to five

different items provide a monetary payoff. Subjects are asked to obtain the highest payoff they

can by exploring alternative allocations of points. We introduced feedback as a mechanism to

enhance awareness of choice consequences and to foster the search for better allocations. We

varied feedback along three dimensions: framing, frequency, and social content. We created

six treatments to isolate the effect of each of the three types of feedback on efficient behavior.

Fig 6. Fraction of efficient choices by round and treatment.

https://doi.org/10.1371/journal.pone.0175738.g006
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Our first finding relates to framing. When feedback contains obtained payoff in terms of

losses, it elicits the highest effect on learning and fosters the search for efficient behavior. This

pattern reflects the phenomenon of loss aversion [32] and loss attention [33]. When feedback

includes losses associated with past choices, compared to when it includes benefits, individuals

become significantly more sensitive to the consequences of their choices and more focused on

the task. As a result, they are more likely to search for better options. This result provides

important implications for policymakers. For instance, to promote efficient behavior, policy-

makers should leverage negative aspects, such as losses and costs, by means of informative

devices.

The second finding concerns frequency. Diluting the frequency of feedback about alloca-

tion choices and obtained payoff does not elicit a significant behavioral change. This result

may appear puzzling. Indeed, it is natural to expect worse performances when feedback is

delivered less frequently. A possible explanation may be that 21 rounds are not enough for the

difference to emerge. Although we cannot rule out this hypothesis, we must stress that both

the average payoff and the percentage of efficient choices in the two frequency conditions tend

to converge rather than diverge over rounds (see Figs 3 and 4). Additionally, we argue that

observing a similar performance in the two frequency conditions can be explained by the

design of the experiment. With the ×3 treatment, we wanted to test whether the frequency of

feedback has an impact on behavior by keeping the amount of information constant. Hence,

the difference between ×1 and ×3 is milder than it appears at a first glance: when a subject

receives feedback in the ×3 treatment, she is informed about the points allocated to the sliders

Table 3. Regressions’ estimates with s.e. in parentheses.

Mod. 3 Mod. 4

FRM probit Cox PH

(robust se) durat. mod.

(Intercept) −0.2935 —

(0.1853) —

d(no info) −0.2517 −0.3072

(0.2500) (0.3956)

d(info ineff) −0.8097*** −1.1357*

(0.2927) (0.4893)

d(female) −0.5981** −0.8420*

(0.2480) (0.3949)

exam_mark 0.0230 0.0504

(0.0443) (0.0746)

time_effort_task −0.0150 −0.0150

(0.0095) (0.0175)

R2 0.216 0.134

Concordance — 0.696

Signif. codes:

‘***’ p-value� 0.001

‘**’ 0.001 < p-value� 0.01

‘*’ 0.01 < p-value� 0.05

‘�’ 0.05 < p-value� 0.1

https://doi.org/10.1371/journal.pone.0175738.t003
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and the payoff she obtained in all the previous three rounds. As a consequence, the search for

efficient allocations may be slower in the ×3 treatment but not significantly so. The fact that a

small reduction of the frequency of feedback has little impact on performances has important

policy implication in those cases where sending the feedback is costly. Indeed, instead of send-

ing feedback after each decision, one can group feedback about multiple decisions without los-

ing much in terms of performance.

Our third finding is with regard to social effects. We find that providing individuals with

feedback containing social information on suboptimal peers is detrimental for eliciting

changes toward efficient behavior. In particular, we find that providing information on the

payoff obtained by an efficient best-performer has no effect on behavior. On the other hand,

providing information on the payoff obtained by an inefficient best-performer significantly

worsens the individual likelihood to search for better alternatives. In this latter scenario, indi-

viduals anchor their behavior to the benchmark suggested by feedback. Providing information

about suboptimal peers leads individuals to satisfying behavior by lowering their aspiration

levels. This result is also of practical relevance for policymaking. It is better to avoid providing

individuals with information triggering social comparison unless the other to compare with is

a virtuous example to imitate.

Fourth, across all treatments we find women to be less willing to search for better alterna-

tives. This is in line with the widely documented gender difference in economic preferences

[54]. One potential fruitful direction for future research would be to exploit the external valid-

ity of field settings to address gender difference in the willingness to search for better alterna-

tives. As an example, we could vary the variance associated with each choice consequence by

providing household women and men with tailored information leaflets about the energy

usage of each individual appliance and test whether it cancelled out this gender difference.

Supporting information

S1 File. Contains robustness check analysis and experimental instructions.

(PDF)
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