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Abstract 
 
We model leadership selection, competition, and decision making in teams with heterogeneous 
membership composition. We show that if the choice of leadership in a team is imprecise or 
noisy—which may arguably be the case if appointment decisions are made by non-expert 
administrators—then it is not necessarily the case that the best individuals should be selected as 
team members. On the contrary, and in line with what has been called the “Apollo effect,” a 
“dream team” consisting of unambiguously higher performing individuals may perform worse in 
terms of team output than a group composed of lower performers. We characterize the 
properties of the leadership selection and production processes which lead to the Apollo effect 
and clarify when the opposite effect occurs in which supertalent performs better than 
comparatively less qualified groups. 
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1 Introduction

The “Apollo Syndrome” is a phenomenon first described and popularized in the man-

agement literature by Belbin (1981). It describes situations in which teams of highly

capable individuals, collectively, perform badly. The phenomenon is named after the

mission teams in NASA’s Apollo space program and refers to situations in which one

team is composed of unambiguously more capable individuals than the comparison

teams. Contrary to intuition, in the experiments Belbin conducted in the 60ies at what

is now Henley Business School, the Apollo teams often finished near the bottom among

the competing teams.1 One of the reasons Belbin gives for the Apollo teams’ failure

is that Apollo team members “spent a large part of their time engaged in abortive de-

bate, trying to persuade the other members of the team to adopt their own particular,

well-stated point of view. No one seemed to convert another or be converted. How-

ever, each seemed to have a flair for spotting the weak points of the other’s argument.

[. . . ] Altogether, the Apollo company of supposed supertalent proved an astonishing

disappointment.” (Belbin, 1981, p. 15)2

For our main result, we model a team production problem in which an executive

or administrator (either a principal or the team itself) appoints a single leader and

subsequently all team members produce joint output by exerting individual efforts. We

assume that the administrator is more likely to select a “wrong” or suboptimal leader

if the skills of the candidates are similar. The model represents the administrator’s

selection capabilities through a symmetric black-box function (for which we supply

micro justifications) that selects individuals with some probability for leadership posi-

tions on the basis of their innate leadership skills which are unknown to the executive.

The higher the skill differences, the easier it is to find the better team leader. We

show that in this environment the Apollo effect—which we define as a team of highly

skilled individuals being outperformed by a team consisting entirely of lower-qualified

members—is generally inescapable and arises for any noisy selection process.

In terms of the selection of leadership roles we think of the following process. The

1 “Of 25 companies that we constructed according to our Apollo design, only three became the
winning team. The favourite finishing position out of eight was sixth (six times), followed by
fourth (four times).” (Belbin, 1981, p. 20) The performance data of the remaining Apollo teams
is not available. If we allocate the remaining 12 teams with equal probability to each remaining
rank, the resulting hypothetical expected Apollo rank is 4.6.

2 The general observation itself is not necessarily novel, as “it chanced unto this gentleman, as the
common proverb is, — the more cooks the worse potage, he had in his ship a hundred marines, the
worst of them being able to be a master in the best ship within the realm; and these so maligned
and disdained one the other, that refusing to do that which they should do, were careless to do
that which was most needful and necessary, and so contending in envy, perished in forwardness.”
Hooker, J., The Life of Sir Peter Carew, 1575.
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(human resources) executive or administrator charged with assigning tasks to workers

and managers is not an expert on the production processes for which the appointments

under consideration are made. She collects information on the performance of the in-

dividuals according to some standardized management selection protocol. Although

she may perform her job admirably, she occasionally makes the wrong leadership as-

signment.

The narrative offered in this introduction explains the Apollo effect based on com-

petition for leadership. This does not need to be taken literally. Any potential for

conflicting opinions, differential styles of conducting business, management philoso-

phies, etc, can be similarly thought of as the basis for the frictions that are modeled

through our black-box assignment function. Among the paper’s extensions we define

and describe the properties of a task-matching model in which the single leadership

interpretation is replaced by a matching interpretation of workers to differentially pro-

ductive tasks. There, the assignment function models the potential for mistakenly

assigning the wrong worker to a given task. Although the Apollo effect is less ubiqui-

tous in this environment than for the leadership game, we show that there are always

skill profiles of workers for which the Apollo effect can arise for suitably noisy task-

selection technologies. While we assume in the main body of our analysis that workers

know each other’s skills, we show that the Apollo effect persists under incomplete skill

information among workers. Finally, we show that the Apollo effect exists regardless

of the introduction of a profit-maximizing principal into the pure team environment.

The plan for the remainder of the paper is as follows. After a short overview

of the applicable literature we define our model in Section 2. Section 3 presents and

illustrates our main result, the ubiquity of the Apollo effect. Section 4 discusses several

extensions, alternative interpretations, and the robustness of the main model. In the

concluding section we discuss a further set of potential applications and extensions.

Proofs of all results and details of some derivations can be found in the appendix.

Literature

Belbin (1981) introduces a “team role” theory designed to enhance team composition

based on a series of business (school) training games.3 The described Apollo syndrome

is an effect of team composition and is as such distinct from the “Ringelmann-type”

free-riding (or social loafing) due to moral hazard in teams (Gershkov et al., 2016).

3 For recent management surveys on team composition and pointers to empirical work see, for
example, Aritzeta et al. (2007) or Mathieu et al. (2013). There is a topical link to the literatures
on collective intelligence in organizations (Woolley et al., 2015) and to swarm intelligence/stupidity
(Kremer et al., 2014).
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Following and building upon Cyert & March (1963), Marschak & Radner (1972),

and Holmström (1977), a rich literature developed on the economics of organizations.

We are unaware, however, of an attempt of introducing systematic errors into (team)

decision making processes and an analysis of their effect on team performance and

team composition in the theoretical literature. There are accounts of cognitive biases

and heuristics in the management literature (e.g., Schwenk, 1984; Gary, 1998), in

psychology (e.g., Kahneman, 2003; Gigerenzer & Gaissmaier, 2011), in sports (e.g.,

Lombardi et al., 2014), and administrative science (e.g., Tetlock, 2000), but we know

of no directly related explorations in economics.

The existing economic literature on team composition problems consists only of a

handful of papers. Chade & Eeckhout (2014) analyze problems of team composition

when teams compete subsequent to the matching stage.4 Their matching setup results

in a model in which externalities affect the obtained sorting patterns that substantially

differ from the standard case.5 Palomino & Sákovics (2004) discuss a model of revenue

sharing when sports teams competitively bid to attract talent. They find that the

organization of the league(s) is key to the optimal design of remuneration schemes

and the resulting availability of talent. In a paper on board composition, Hermalin

& Weisbach (1988) discuss how firm performance and CEO turnover determine the

choice of directors. None of these papers develops the core of our paper, namely,

leadership selection under assignment errors.

The endogenous emergence of team leadership is modeled explicitly in several pa-

pers in the recent literature. In Kobayashi & Suehiro (2005), each of two players gets

imperfect, private signals on team productivity. The individual incentives to lead by

example (as in Hermalin, 1998) give rise to a coordination problem. Andreoni (2006)

analyzes a public goods provision game in which a team can learn the project type

by individually expending some small cost. The investing “leader” faces free-riding

incentives. Huck & Rey-Biel (2006) analyze teams of asymmetrically productive and

conformism-biased agents. They find that the less-productive among two equally biased

agents should lead. In contrast, our paper does not model a particular leadership game

but employs a black-box assignment function yielding selection probabilities based on

idiosyncratic skills which should, in principle, be compatible with a large set of selection

4 In their motivation, Chade & Eeckhout (2014) ask whether or not a single “superstar” team would
have been able to confirm the existence of the Higgs Boson quicker than the competing ATLAS
and CMS teams at CERN’s Large Hadron Collider.

5 In the settings we analyze, the optimal allocation is usually given by assortative matching, that is,
the more talented team member should be assigned a leadership position or the higher productivity
task. However, as the administrator (or organization) assigns leadership based on imprecise skill
information, this results in a noisy allocation (for bounds on efficiency in case of coarse matching
see McAfee, 2002). The main difference to this literature is that, in our analysis, the matching
procedure is taken into account in the specified compensation scheme.
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procedures.

There are many further papers analyzing organizational design issues that are

touched upon by this paper such as, for instance, the concept of leadership (Her-

malin, 1998; Lazear, 2012), battles for control (Rajan & Zingales, 2000), sequentiality

of production (Winter, 2006), transparency of efforts (Bag & Pepito, 2012), and repe-

tition (Che & Yoo, 2001). For other aspects of organizational theory see the excellent,

recent overviews (e.g., Bolton et al., 2010; Hermalin, 2012; Waldman, 2012; Garicano

& Van Zandt, 2012).

2 The model

There is a team consisting of two members {1, 2}. Each team member is supposed

to exert unobservable effort that contributes to joint output. In addition, each team

member i ∈ {1, 2} is attributed with managerial or leadership skill θi ∈ R+. The

team’s output depends on the assigned leader and on the efforts of all team members.6

Denote by y(θi, e1, e2) the team output when agent i ∈ {1, 2} is assigned to lead the

team, agent 1 exerts effort of e1 and agent 2 exerts effort of e2. The cost of exerting

effort ei is the same for both agents, c(ei), with c′ > 0 and c′′ > 0. The effect of the

agents’ effort exertion on output is symmetric, that is, for any θi, e1 and e2 the team

generates
(1)y(θi, e1, e2) = y (θi, e2, e1) .

We assume that y is differentiable with

(2)y1 =
∂y

∂θi
> 0, yj+1 =

∂y

∂ej
> 0, yj+1,j+1 =

∂2y

∂e2j
< 0, yj+1,1 =

∂2y

∂ej∂θi
> 0

for any j ∈ {1, 2}. The time structure of the modelled events is the following: at

the first stage of the interaction, one of the agents is appointed the team leader. At

the second stage, the agents exert uncontractible efforts after observing the chosen

leader and his leadership skill.7 The resulting output is divided equally between the

team members.8 Monotonicity of output y with respect to the leader’s skill attribute

6 The leadership position creates a (sufficiently high) private and non-monetary benefit to the
appointed leader which renders the trivial (and potentially first-best) solution of “selling the project
to the manager” infeasible. For empirical justifications of such benefits including “self-dealing”
see, for instance, Tirole (2006, p. 17).

7 Similarly to the sequential game outlined above, the Apollo effect can be shown to exist in a
simultaneous production version of the model in which all players choose their respective strategies
at the same time.

8 The paper’s results hold regardless of the chosen output division rule. In particular, it is unimpor-
tant for the occurrence of the Apollo effect whether incentives are provided to exert (constrained)
efficient efforts or not (Gershkov et al., 2016).
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implies that it is optimal to choose the agent with the highest leadership skills as a

team-leader.

The main premise of the paper is, however, that selecting a team leader (or deci-

sion making in general) is a complex process that sometimes involve mistakes. More

precisely, we denote by f(θi, θj) the probability that agent i is appointed to the lead-

ership position when i’s leadership skills are represented by parameter θi, while the

other team member’s skill is θj . With probability 1− f(θi, θj) player j is assigned the

leadership. We assume that the assignment function is symmetric

(3)f(θi, θj) = 1− f(θj, θi),

responsive

(4)
∂f(θi, θj)

∂θi
> 0,

and satisfies appropriate probability limit behavior, in particular f(0, θ̂) = 0 for θ̂ > 0.9

In the introduction we motivate informally how this function f may arise from some

management selection processes. We now give two more formal micro-justifications

for the main properties of the black-box function we use throughout the paper. In the

first formalization, we think of the appointing executive having access to a test which

is potentially capable of ranking the candidates: if either one candidate is below and

the other candidate is above the test location, then the test returns the ranking. If

both candidates are below or above the test location, then one candidate is picked at

random. Being less than perfectly well informed, however, the executive can choose

the location of the test only probabilistically. Assume that the test realizes at threshold

θ̂ with positive density t(θ̂). Then the probability of player 1 with skill θ1 being chosen

under this test is

(5)
1

2

[

∫ min(θ1,θ2)

0

t(θ̂)dθ̂ +

∫ 1

max(θ1,θ2)

t(θ̂)dθ̂

]

+ 1{θ1≥θ2}

∫ max(θ1,θ2)

min(θ1,θ2)

t(θ̂)dθ̂.

The derivatives for any realization of θ1 > θ2 are as required by our assumptions.

Our second micro-foundation is based on the idea that the administrator can make

noisy observations of the two agents’ types θi+εi and only knows that εi is distributed

independently and identically according to any continuous distribution H (for a com-

plete model development, see Lazear & Rosen, 1981). The administrator then bases

a decision on her noisy observation of leadership abilities. In this environment, the

probability that agent 1 will be appointed is

(6)Pr(θ1 + ε1 > θ2 + ε2) = Pr(ε2 − ε1 < θ1 − θ2) ≡ P

9 The implied discontinuity at f(0, 0) does not play a role in our analysis.
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in which the difference between the two independently distributed random variables is

itself a continuously distributed random variable. The derivatives of this assignment

probability P satisfy the required properties of f(θ1, θ2).

3 The main result

This section presents the principal finding of this paper, the ubiquity of the Apollo

effect. Before we start the formal analysis we would like to point out that the first-

best efficient selection in which the better qualified player is always appointed the

team leader by an uniformed administrator is generally unattainable in the specified

game based on selection capabilities f . We start the discussion by means of a simple,

illustrative example of the main idea.

Example 1: In the following comparative static arguments we distinguish between

two teams j ∈ {A,B} and typically assume that team members’ abilities are ranked

θA1 ≥ θB1 and θA2 ≥ θB2 , so team A consists of unambiguously higher ability players

than team B. For leadership selection, an administrator employs a black-box function

based on ability ratios which gives the probability of player i ∈ {1, 2} being selected

as leader as10

(7)f(θi, θj) =
θri

θr1 + θr2
, r > 0.

If player i ∈ {1, 2} is selected as team j’s leader (j ∈ {A,B}), then θ̂ = θji and the

team generates simple linear output

(8)y(θ̂, e1, e2) = θ̂(e1 + e2).

As either player 1’s or player 2’s ability is employed exclusively for leadership we refer

to this case as “exclusive” management or production.11 Following the time structure

outlined above, workers know whether or not they are assigned leadership roles before

exerting efforts, i.e., any mistakes are made during a first leadership assignment stage

while unobservable efforts are exerted by perfectly informed agents at a second stage.

More specifically, player i’s stage-2 objective, given that the player with type θ̂ is chosen

as leader and output is shared equally, is

(9)max
ei

ui(θ̂) =
y(θ̂, ei, ej)

2
− c(ei).

10 In different environments similar functions have been called “logistic” or “sigmoid” functions.
The contest literature refers to a variant of (7) as “ratio,” “power,” or “Tullock” contest success
function (Jia et al., 2013). Note that—as there are no strategies involved at this stage—our use
of this function for leadership selection is purely descriptive and constitutes no game.

11 In order to capture also shared production aspects in teams of complementary skills where indi-
viduals are matched to tasks, we will later allow for a “task matching” model extension.
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Assuming quadratic effort costs c(e) = e2, symmetric equilibrium efforts are simply

(10)e1(θ̂) = e2(θ̂) = θ̂/2.

At the leadership selection stage, the administrator selects either player 1 with prob-

ability f(θ1, θ2) or player 2 with probability 1 − f(θ1, θ2) as the team leader. Hence,

first stage expected equilibrium team output is

(11)

Y (θ1, θ2) = f(θ1, θ2)y(θ1, e(θ1), e(θ1)) + (1− f(θ1, θ2))y(θ2, e(θ2), e(θ2))

= θ22 + f(θ1, θ2)(θ
2
1 − θ22)

=
θr+2
1 + θr+2

2

θr1 + θr2
.

We now implicitly define an “isoquant” function θ2(ȳ, θ1) which determines the type

θ2 that achieves the constant output level ȳ for some type θ1. An example is shown

in Figure 1: low precision r = .25 is shown on the left, moderate precision r = 2 in

the middle, and high precision r = 15 on the right.12 We restrict attention (without

loss of generality) to θ1 ≥ θ2, so only the subset under the diagonal is relevant in the

figure. Team compositions “under the isoquant,” that is, to the left of the isoquant

θ2(ȳ, θ1), produce lower output than ȳ. Skill pairs “above the isoquant” to the right

of isoquant θ2(ȳ, θ1) produce higher output than ȳ. The Apollo effect arises here

because, for any point (θ̂1, θ̂2) on a positively sloped part of an isoquant, we can find

a point (θ1 > θ̂1, θ2 > θ̂2) under this isoquant (close to where it is vertical), such that

y(θ̂1, θ̂2) > y(θ1, θ2). Note that one would not expect a positive slope of the isoquants

in Figure 1 without the possibility of making mistakes in leadership assignment. In this

example, the Apollo effect shows for all selection precisions, provided that the type

spread θ1 − θ2 is sufficiently high. ⊳

One may be curious, however, how pervasive the occurrence of the Apollo effect

arising in the above example is. In order to answer this question, we start the formal

argument by defining the Apollo effect in a general production environment with two

teams.

Definition 1. The environment expresses the Apollo effect, if there exist two teams

{A,B} with leadership skills
(

θA1 , θ
A
2

)

>>
(

θB1 , θ
B
2

)

with yA < yB, where yA is the

equilibrium output of team A and yB is that of team B.

12 We refer to the exponent r in (7) as “selection precision” of player 1 because it parameterizes the
derivative of the assignment function with respect to θ1. The comparison case of no mistakes is
obtained for r → ∞, i.e., f(θ1, θ2) = 1 iff θ1 ≥ θ2. In this case, the level sets in the right panel
of Figure 1 become a perfectly rectangular map. In contrast, if r = 0, we have f(θ1, θ2) = 1/2
for any θ1 and θ2.
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Figure 1: Shown are “isoquant” expected team output level sets with θ1 on the horizontal
and θ2 on the vertical axis for r = .25 on the left, r = 2 in the middle, and r = 15 on the
right.

Without loss of generality, we assume that θ1 ≥ θ2. Observing the appointed leader

of type θ̂ and assuming equal sharing of output, team member i maximizes effort stage

utility

(12)max
ei

ui =
y(θ̂, e1, e2)

2
− c(ei).

Taking the derivative with respect to ei defines symmetric equilibrium effort e∗ = e1 =

e2 as
(13)yi+1(θ̂, ei, ej)− 2c′(ei) = 0

in which subscripts on functions denote derivatives. The assumed curvature of the

output and cost functions guarantee that e∗(θ̂) is non-decreasing. We substitute these

equilibrium efforts into output which determines equilibrium team output as

(14)Y (θ1, θ2) = f(θ1, θ2)y(θ1, e
∗(θ1), e

∗(θ1)) + (1− f(θ1, θ2)) y(θ2, e
∗(θ2), e

∗(θ2)).

It turns out that the following is an analytically convenient way to demonstrate that

the Apollo effect exists: we show that there exists a skill combination (θ1, θ2) such

that y(θ1, θ2) has a positive gradient, i.e., there exist (η1, η2) >> 0 such that

(15)
∂Y (θ1, θ2)

∂θ1
η1 +

∂Y (θ1, θ2)

∂θ2
η2 < 0.

Our main claim is that there exists a team endowed with skills θA for which equilibrium

team output shrinks if either or both types are increased infinitesimally.

Lemma 1. The Apollo effect arises if and only if

(16)− f2(θ1, θ2)

1− f(θ1, θ2)
>

e′∗(θ2)2ye(θ2, e
∗(θ2), e

∗(θ2)) + y1(θ2, e
∗(θ2), e

∗(θ2))

y(θ1, e∗(θ1), e∗(θ1))− y(θ2, e∗(θ2), e∗(θ2))
.
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The Lemma allows us to specify when the Apollo effect is plausible. It shows that

increasing the difference between the team members increases the chance of observing

the Apollo effect (if y(θ1, e
∗(θ1), e

∗(θ1)) − y(θ2, e
∗(θ2), e

∗(θ2)) is high, f(θ1, θ2) is

high and hence it is easier to satisfy the condition of the last Lemma). Moreover,

the probability of misallocation must be responsive to the skills, that is, f2(θ1, θ2) is

substantially low (and negative).

An immediate implication of the Lemma and its proof is that while improving the

leadership skill of the best team member is always beneficial, this is certainly not the

case for the lower-qualified team member. We proceed to state a general property of

exclusive production.

Lemma 2. For exclusive production y(θ, e(θ), e(θ)) and θ̂ > 0, we have

(17)f(θ̂, θ̂)y(θ̂, e(θ̂), e(θ̂)) + (1− f(θ̂, θ̂))y(θ̂, e(θ̂), e(θ̂))

= f(θ̂, 0)y(θ̂, e(θ̂), e(θ̂)) + (1− f(θ̂, 0))y(0, e(0), e2(0)).

Therefore, for any θ̂, the points (θ̂, θ̂) and (θ̂, 0) belong to the same isoquant. Note

that for symmetric functions f , the isoquants’ slope at θ1 = θ2 must be −1 at the

diagonal of our level sets. Together, these observations imply the following general

result.

Proposition 1. The Apollo effect arises under exclusive leadership assignment for

every feasible continuous function f .

This results shows that the only case in which the Apollo effect cannot arise is if the

possibility for leadership selection mistakes is entirely absent. For concave production

technology and any conceivable, not infinitely accurate continuous leadership selection

technology f , there will be skill profiles which give rise to the Apollo effect, i.e., where

unambiguously better qualified teams must be expected to produce lower output than

a set of “underdogs.” We now illustrate our main result through a series of applications

and direct extensions in the form of remarks.

Remark 1 (Labor market). This environment can be used to study the effect of

imprecise leadership selection on the optimal assignment of agents to several teams.

We keep the same informational assumptions as in the rest of this section but are here

only interested in characterizing the optimal team composition, not a game capable

of bringing it about. In particular, we ask which agent types from the ordered set

θ1 > θ2 > · · · > θn, n ≥ 3 should optimally self-select into what team structure?

We assume that the firm wishes to create k < n/2 teams of two agents each.

Subsequent to the creation of the teams, a leader will be chosen in each team following

10



the procedure we introduced. How should the hiring and team creation process take

the later leader selection process into account? To answer this question, we have to

identify the optimal hiring and coupling assuming that the types are observable at this

stage. This illustrates which types should be targeted and the information that needs

to be collected on candidates.

Absent a possibility for subsequent leadership selection mistakes, an optimal match-

ing is to form k teams with team j led by agent θ2j−1, i.e., one of the k agents with the

highest leadership ability with any second agent chosen from the lower half of types.

If the lower-skill partners’ types have an arbitrarily small output contribution, then the

lowest type(s) (θ2k+1, . . . , θn) will never be employed.13 Therefore, it is important to

identify and exclude the lowest ability types. Yet, if leadership assignment is imprecise,

an implication of the Apollo effect is that a set of workers strictly better qualified than

these “worst” types should be optimally excluded.

Consider, for example, the ordered set of n = 5 agent types θi = (n− i)/(n− 1)

with identical, linear production y(θ, e1, e2) = θ(e1+ e2), quadratic costs c(e) = e2/2,

and ratio assignment f(θ) = θri /(θ
r
i + θrj ), r > 0. Assume that the organization needs

two teams and, hence, seeks to exclude one agent. For r ≥ 1 it is optimal to exclude

the agent with median ability θ3. The example intuition of “dropping the middle” types

for sufficiently precise assignment f can be generalized and has implications for the

labor market: firms demand the right types, not necessarily the highest available types.

In the example, given sufficient precision of f , the middle types are left unemployed

but the lowest type θn is employed in all optimal matchings!

Remark 2 (Project selection). Consider a manager’s choice between two projects of

unknown quality θ1, θ2 guided by the imperfect selection technology f(θ1, θ2). In this

application, project output y(θi, K, L) is increasing in θi, satisfies the equivalents of

assumptions (1) & (2), and the symmetric factors K and L are chosen by strategic

project employees who privately observe quality θi. Proposition 1 shows that there are

situations in which improving both individual projects to θ′1 > θ1 and θ′2 > θ2 actually

decreases the firm’s expected revenue relative to the original, unambiguously worse

project environment.

Remark 3 (Larger teams). While our other results are stated for assignment functions

defining selection probabilities for just two players we now analyze the consequences

13 This positive influence can be made precise and formalized by an infinitesimally small, positive
multiplier tl in the task-matching environment of section 4.1 which, in general, gives qualitatively
similar results to exclusive production only for intermediate precision of assignment function f .
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of increasing the team size.14

For example, consider an n-player version of our model governed by the usual linear

production y(θ, e1, . . . , en) = θ(e1 + · · ·+ en) and quadratic efforts cost c(e) = e2/2.

We adopt a ratio-assignment function which gives the probability of (the highest-type)

player 1 being selected as

(18)f(θ1, . . . , θn) =
θr1

θr1 + · · ·+ θrn
, r > 0.

Provided that all team members share output equally, this results in type-contingent

equilibrium efforts of e = θ/n while a benevolent planner would dictate the efficient

e∗ = θ. As in the two agent case, the Apollo effect arises in this example.

4 Further results

4.1 Task matching

The main result of this paper rests on a conflict (for leadership) interpretation to

explain the Apollo effect since either team member’s management skills enter the

production process exclusively. Only one of the team members is appointed the leader

and the other player’s leadership skill is completely discarded. Deviating from this

leadership interpretation, we now assume that the production technology requires that

all workers are matched to their “correct” tasks and therefore both individual skills

enter production.15 That is, we consider an environment in which the organization or

its executives must assign team members to different tasks and, after the assignment,

the agents apply their skills and exert effort on the allocated tasks. This assignment,

however, may involve mistakes or misallocations of agents to tasks. We employ the

following output function

(19)y(θi, θj , ei, ej) = yh(θi, ei) + yl(θj , ej)

in which both yh(θ, e) and yl(θ, e) are weakly concave and increasing in both argu-

ments. That is, each worker is matched either with task h or with task l. Each worker

14 Amazon’s Jeff Bezos is reported to employ a “two pizza rule:” if a team cannot be fed by two
pizzas, then that team is too large. The idea is that having more people work together is less
efficient, i.e., team output decreases beyond the optimal size. This is the case in Shellenbarger
(2016) who argues that participants tend to feel less accountable in crowded meetings, therefore
doubt that any contribution they make will be rewarded, and hence reduce effort.

15 Referring back to our motivational example of the NASA Apollo missions, the Apollo teams were
composed of distinct roles. The Apollo 11 team, for instance, consisted of mission commander Neil
Armstrong, command module pilot Michael Collins, and lunar module pilot Edwin Aldrin. Hence,
team performance depended on each member of the crew being selected into and performing a
very specific task.
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uses “leadership” skills and efforts on the allocated task. Function f chooses the

assignment of the workers to the tasks. Otherwise the model is the same as in the

previous section. Without loss of generality and as before we assume that θ1 ≥ θ2.

We assume that for any e ≥ 0

(20)yh1 (θ, e) > yl1(θ, e) > 0.

Therefore, the efficient assignment is that the higher ability agent 1 is assigned task

h, while agent 2 is assigned task l. Given an allocation, the agents will exert efforts

dictated by the first-order conditions (ehi (θi), e
l
j(θj)):

(21)yh2 (θi, ei) = 2c′(ei), yl2(θj , ej) = 2c′(ej).

Assuming, in addition to (20), that

(22)yh2 (θ, e) > yl2(θ, e) > 0, yh12(θ, e) > yl12(θ, e) > 0 and 0 > yh22(θ, e) > yl22(θ, e)

implies that equilibrium effort on both tasks is increasing in type and that both eh(θ) >

el(θ) > 0 and eh′(θ) > el′(θ) > 0. At the selection stage, expected team output under

task matching is

(23)Y (θi, θj) = f(θi, θj)z(θi, θj) + (1− f(θi, θj)) z(θj , θi),

in which we assume that z(θi, θj) is the equilibrium output if agent i is assigned to

task h and agent j is assigned to task l, i.e.,

(24)z(θi, θj) = y(θi, θj , e
h
i (θi), e

l
j(θj)).

Our assumptions above imply that z(θ1, θ2) > z(θ2, θ1). As for our main result, we fix

ideas by starting with a motivating example.

Example 2: We assume that team output is created by the simple production function

(25)y (θi, θj , ei, ej) = thθiei+tlθjej , with th ≥ tl.

Similarly to the previous example, we assume that costs are quadratic, c(e) = e2, and

that the allocation technology is

(26)f(θi, θj) =
θri

θr1 + θr2
, r > 0

specifying the probability that agent i is assigned task h. Then task-specific equilibrium

efforts are ex(θ) = txθ, x ∈ {h, l}, and expected equilibrium team output is

Y (θi, θj) = f(θi, θj)z(θi, θj , e
h
i (θi), e

l
j(θj)) + (1− f(θi, θj))z(θj , θi, e

h
j (θj), e

l
i(θi))

=
f(θi, θj)(θ

2
i − θ2j )(t

2
h − t2l ) + θ2j t

2
h + θ2i t

2
l

2

=
t2h
(

θr+2
i + θr+2

j

)

+ t2l
(

θ2j θ
r
i + θ2i θ

r
j

)

2
(

θri + θrj
) .
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The arising isoquants under different selection precisions r are shown in Figure 2: as

in Figure 1 for the exclusive leadership case, low precision r = .25 is shown on the left,

moderate precision r = 2 in the middle, and high precision r = 15 on the right. The

example task values are th = 2/3, tl = 1/3.
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Figure 2: Task matching level sets showing expected output for th = 2/3 and tl = 1/3. The
level sets are drawn for r = .25 on the left, r = 2 in the middle, and r = 15 on the right.
The solid golden line represents condition (27).

The Figure illustrates that under task matching and for a given pair (th, tl), the

Apollo effect only shows in cases where the subsequent selection precision r is below

the minimal threshold which in the present example is implicitly given by

(27)
3θ22(θ

r
1 + θr2)

(θ21 − θ22)(θ1θ2)
r
= r

t2h − t2l
θr1t

2
h + θr2t

2
l

or, plugging in example values, r ≤ 2.52. This threshold condition expresses that the

less it matters who is assigned to which task, i.e., the closer th and tl are, the more

likely assignment mistakes must be in order for the Apollo effect to arise. ⊳

Intuitively, we can decompose the second player’s marginal output contribution into

two components: productive and disruptive. For the moment, consider the (efficient)

case of an infinitely precise allocation function f so the disruptive effect does not arise.

Starting at any interior point θ̂ = θ1 = θ2 on the diagonal in figures 2, 3 and 4, a

decrease in θ2 goes along with lower output that must be compensated by an increase

in θ1 in order to stay on the same isoquant I(·). Hence, the isoquants in the middle

panel of the top row of Figure 3 now become “triangular” in the sense that the point

on the diagonal where θ1 = θ2 = θ̂ is connected by a negatively sloped curve with the

point on the horizontal axis where (θ̃1 > θ̂1, θ2 = 0). This point is to the right of the

point (θ̂1, θ2 = 0) directly under the diagonal from which we started. The horizontal

shift of the isoquant depicts the marginal productive influence of player 2 which we

call the productive effect (which includes, more generally speaking, the “synergies”

created by teamwork).
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The discussed isoquant maps are illustrated in Figure 3, the detailed decomposition

into productive and disruptive marginal effect is shown in Figure 4. The latter displays

the productive marginal effect (the negative vertical slope of the blue isoquant I(a′, b′))

and the total marginal effect (the vertical slope of the red isoquant I(a′′, b′′)) for the

task-matching case of th > tl and intermediate selection precision f .
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Figure 3: Isoquants for infinitely precise f in the first row (illustrating the pure productive
effect) and r = 1 in the second row (illustrating both productive and disruptive effects).
Plotted are the cases of th = 1 and tl = 0 (left), tl = 1/2 (middle), and tl = 1 (right).

Any assignment function f which satisfies our assumptions introduces allocative

inefficiency, thereby shifting all points of the efficient-assignment blue isoquant—except

for the two points on the diagonal and horizontal axis just pinned down—further to

the right, resulting in the red isoquant of Figure 4. This is what we call the disruptive

effect. The disruptive effect tends to shift points (θ1, θ2) close to the diagonal (where

the chance of mistakes is highest) further to the right than those with lower θ2. But

only in the extreme case in which the disruptive effect causes an isoquant to become

positively sloped the Apollo effect arises. This happens precisely if the (negative)

marginal disruptive effect—described by f2(θ1, θ2)—more than outweighs the (positive)

marginal productive effect of a marginal increase of θ2.

Compare this to the exclusive leadership case considered in the previous section

(illustrated in the two left-hand panels of Figure 3 and the black isoquant of Figure

4): there, the efficient isoquant map was perfectly rectangular and any imprecision
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replacements

(θ̂1 = θ̂2)

(θ̂1, 0)
θ1

∆

θ2

a a′′

b b′′

−1

(θ̂1 = θ̂2)

(θ̂1, 0) (θ̃1, 0)
θ1

∆

θ2

a a′ a′′

b b′ b′′

−1

Figure 4: Three isoquants are shown on the right: infinitely precise f : I(a, b) under exclu-
sive leadership (black), infinitely precise f : I(a′, b′) for task-matching (blue), and finite f :
I(a′′, b′′) under task-matching with th > tl (red). The marginal, positively sloped (total)
Apollo effect is shown as dashed tangent through b′′. The necessity of the Apollo effect
under exclusive leadership for finite f is illustrated on the left.

of f leads to disruption shifting all points of the isoquant (expect for those on the

diagonal and horizontal axis) to the right. Hence, the Apollo effect is always present

in the simpler exclusive leadership environment of proposition 1. The existence of the

Apollo effect in the task matching environment of this section, however, depends on

the marginal output of player 2 (1)—her productive contribution—being smaller than

the disruptive effect introduced through the possibility of wrongly assigning her to

the more (less) productive task h (l). Our next result summarizes this intuition and

generalizes the previous example by identifying a condition on the assignment function

f that guarantees the Apollo effect to arise also in the task-matching environment.

Proposition 2. For equilibrium task-matching production z(θi, θj), a sufficient con-

dition for the Apollo effect to arise for some type profile θ1 > θ2 is that the selection

technology f(θ1, θ2) satisfies

(28)f2(θ1, θ2) <
z2(θ1, θ2) + z1(θ2, θ1)

2z(θ2, θ1)− 2z(θ1, θ2)
.

Notice that the condition of this proposition holds if f2(θ1, θ2) is sufficiently low

(and negative). To get a better understanding of the last condition, observe that for f

infinitely precise, we have f2(θ1, θ2) = 0 for any θ1 > θ2. Therefore, indeed as we write

in the intuition before the proposition, the Apollo effect arises for sufficiently imprecise

assignment functions.

Example 3: We continue in the setup of the previous example with

z(θi, θj) = thy
p(θi, e

h) + tly
q(θj , e

l).
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For quadratic costs and task-specific, linear production (25), the equilibrium production

is yx(θ, e(θ)) = txθ
2, x ∈ {h, l}. The condition for an isoquant to have positive slope

(expression (43) in the proof of proposition 2) is

(29)
t2h

t2h − t2l
< f(θ1, θ2)− f2(θ1, θ2)

θ21 − θ22
2θ2

.

For the general ratio assignment function (7), this condition (29) equals

(30)
t2h

t2h − t2l
<

θr1
θr1 + θr2

− (rθr−2
2 )

θr1 (θ
2
2 − θ21)

2 (θr1 + θr2)
2

in which the term rθr−2
2 goes to infinity as θ2 → 0 for 0 < r < 2, irrespective

of θ1 > θ2. Hence the claimed inequality holds for some spread of types. This is

confirmed by the sufficient condition (28) which specifies in this case

(31)− rθr1θ
r−1
2

(θr1 + θr2)
2 < − θ2 (t

2
h + t2l )

(θ21 − θ22) (t
2
h − t2l )

which equals at arbitrary point θ1 = 3/4, θ2 = 1/4 (indicated in the below figure) and

task multipliers th = 1, tl = 1/4

(32)− r

cosh(r log(3)/2)2
< −17

30
⇔ r ∈ [0.64, 2.5].

Figure 5 shows examples of the corresponding output contour sets for different task

multipliers and selection precisions. ⊳
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Figure 5: Left and center: type combinations for th = 1, tl = 3/4 producing the same output
Y (θ1, θ2). Left is the case of r = 1, center are the same isoquants for r = 2. The blue lines
shows type-pairs for which the isoquants are vertical. The right panel illustrates a case of
multiple critical locations (th = 1, tl = 1/4, and r = 4).
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4.2 Incomplete information among agents

In this section we illustrate the robustness of our previous results by relaxing the

assumption that agents know each others’ types. For this purpose, we assume the

types distribute independently and identically according to distribution function G with

density g on support [a, b]. When exerting effort, each agent knows only his own type

and whether or not (s)he was assigned as a leader. Therefore, a symmetric equilibrium

is characterized by two functions: eL(θ), the effort function of the agent who was

selected to be the team-leader and eF (θ), the effort function of the agent who was

not selected as team-leader.

Proposition 3. A pair of necessary conditions for equilibrium efforts under incomplete

information among agents’ skills is

(33)

∫ b

a

y2
(

θ, eL(θ), eF (θ′)
)

f (θ, θ′) g (θ′) dθ′ = 2c′(eL(θ))

∫ b

a

f (θ, θ′) g (θ′) dθ′

and

(34)

∫ b

a

y3
(

θ′, eL (θ′) , eF (θ)
)

f (θ′, θ) g (θ′) dθ′ = 2c′(eF (θ))

∫ b

a

f (θ′, θ) g (θ′) dθ′.

We illustrate this result in the same environment as for the previous examples.

Assume that c(e) = e2/2 and y(θ, e1, e2) = θ (e1 + e2), then the above first-order

conditions (33) and (34) become

(35)

eL(θ) = θ/2,

eF (θ) =

∫ b

a

θ′f (θ′, θ) g (θ′) dθ′

2

∫ b

a

f (θ′, θ) g (θ′) dθ′
= Eθ′|follower has type θ [θ

′]

=
r + 1

2(r + 2)

2F1

(

1, r+2
r
; 2 + 2

r
;−θ−r

)

2F1

(

1, 1 + 1
r
; 2 + 1

r
;−θ−r

)

in which 2F1(x) is the ordinary hypergeometric function (representing the hypergeo-

metric series).16 An example for the Uniform distribution and the case of θ = 2/3 is

shown in Figure 6. These equilibrium efforts yield expected team output

(37)Y (θ1, θ2) = f(θ1, θ2)y(θ1, e
L(θ1), e

F (θ2))+ (1− f(θ1, θ2)) y(θ2, e
F (θ1), e

L(θ2)).

Isoquants as in the previous examples are shown for precisions r ∈ {.25, 2, 8} in Figure

6. As the positively sloped parts of the isoquants illustrate, the Apollo effect is present

in this example with incomplete information as well.

16 The ordinary hypergeometric function is defined as

(36)2F1(a, b; c; z) =
∞
∑

n=0

(a)n(b)n
(c)n

zn

n!
.
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Figure 6: Expected team output level sets for uniformly distributed partner types for r = .25
on the left, r = 2 in the middle, and r = 8 on the right.

4.3 Principal-agent model

Contrary to the team production environment used for all other results of this paper,

this section explores the robustness of our findings with respect to the presence of

a profit-maximizing principal who may act as a budget breaker and can therefore

discipline the team members engaged in production. While we assume that the agents’

efforts remain unobservable, we assume that final output is observe- and contractible.

Moreover, we assume that the principal—although (s)he does not observe the attributes

of the chosen leader—knows the composition of skills in the team. Therefore, the

contract that the principal specifies may depend on the produced output and the

composition of the leadership skills in the team (but not of the skill of the assigned

leader).

We analyze the same production setup as before in an environment in which a board

(the principal) appoints a manager among a team of heterogeneous agents. We model

the situation in which this principal may make mistakes in assigning the “correct”

leader to the team by assuming that the principal only observes ranking information

on agent types’ θ, summarized by function f in (7).

Example 4: In the exclusive production environment, assume that the principal pays a

fixed wage w.17 Assume further, as a first step, that agent efforts are observable to

the principal (but types are not) and wages can condition on these efforts. Moreover,

we assume the same linear production function (8) as in the previous examples. Then

the principal and agents solve the problem

(38)
max
w(e)

y = f [θ1 (2e
1
i )− 2w(e1i )] + (1− f) [θ2 (2e

2
i )− w(e2i )]

s.t. uj
i = w(eji )− c(eji ) ≥ 0.

17 A similar example for the principal-agent model under task-matching exhibits qualitatively com-
parable effects and is available from the authors.
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Under the standard quadratic costs, this is solved by

(39)eji (θj) = θj , w(eji ) =
(θj)2

2
.

Since efforts can be observed by the principal, she can ex-post invert the observed

efforts to learn the agents’ types. This information, however, is not available to her

at the ex-ante stage when she makes the leadership assignment. Under the assumed

ratio assignment mistakes (7), expected equilibrium team output is

(40)2
θr+2
1 + θr+2

1

θr1 + θr2
.

Our usual example confirms the possibility of the Apollo effect in this environment:

Figure 7 shows the principal’s equilibrium profit exhibiting the Apollo effect in all cases

(team output would show the same effect).
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Figure 7: Expected profits in the principal-agent environment with observable efforts. The
panels show selection precisions r ∈ {1/4, 2, 15} from left to right.

We proceed to the case of unobservable efforts. We stay in the linear production

environment with y = θ(e1 + e2), quadratic costs c(e) = e2/2, and only two possible

assignments: θ1 > θ2. The principal sets the wage w based on the observed output

y. Without loss of generality we can assume that the principal pays equally to both

agents. The principal wants to induce effort of e(θ1) when the assignment is θ1, and

e(θ2) when the assignment is θ2. Therefore, along the equilibrium path, the principal

expects to see either y(θ1) = 2θ1e(θ1) or y(θ2) = 2θ2e(θ2). Without loss of generality

we can assume that there are two wage levels: w(y(θ1)) and w(y(θ2)), for any other

output, the principal pays a wage of zero.
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Hence, the combined problem of the principal and the two agents we consider is

(41)

max
e(θ),w(y(θ))

f [y(θ1)− 2w(y (θ1))] + (1− f) [y(θ2)− 2w(y (θ2))]

s.t. (IR1) : w(y (θ1))− c(e (θ1)) ≥ 0,

(IR2) : w(y (θ2))− c(e (θ2)) ≥ 0,

(IC1) : w(y (θ1))− c(e (θ1)) ≥ w(y (θ2))− c
(

y(θ2)
θ1

− y(θ1)
2θ1

)

,

(IC2) : w(y (θ2))− c(e (θ2)) ≥ w(y (θ1))− c
(

y(θ1)
θ2

− y(θ2)
2θ2

)

.

The wages (58) and efforts (59) which solve this problem are derived in the ap-

pendix. We insert them into the principal’s problem and plot level sets of the principal’s

expected profit in Figure 8 for different precisions of the assignment function f . As

isoprofit curves have positive slopes for some type profiles in all cases, we confirm the

Apollo effect also in the principal-agent environment.⊳
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Figure 8: Expected PAM-profits for unobservable efforts exhibiting the Apollo effect. The
level sets are drawn for r ∈ {.25, 2, 15}; only region θ1 > θ2 below the diagonal is relevant.

5 Concluding remarks

Successful law firms, medical or accounting partnerships, etc, strive to hire the brightest

graduates for their organizations. By definition, these firms are Apollo teams, consisting

of competitive individuals whose professional training may not always have emphasized

lateral relationship skills. This paper provides a model for systematically thinking about

the implications of this observation.

At its core, the present paper analyzes the influence of potential appointment mis-

takes on team production. For this purpose we model team member skills as exogenous

and let an official who has only statistical information on the workers’ skills match the

team members to tasks or positions. The baseline analysis shows that mistakes of

this kind lead inevitably to what has been called the Apollo effect: the property that
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teams composed of weaker individuals may outperform teams of unambiguously higher

qualified individuals in terms of team output. Our model extensions allow for more

complex task assignment or production modes, private information on skills among the

workers, and the presence of a profit-maximizing principal. We show that in all cases,

to some extent, the Apollo effect cannot be avoided.

Many other economically interesting situations could be modeled with the method-

ology developed in this paper. For instance, a standard electoral competition model

could be enriched through politicians choosing platforms (their “types” in our model)

and voters who are unable to perfectly discriminate between these platforms may make

mistakes in choosing their candidates. This would presumably counteract the tendency

of candidates to move towards the median as such a convergence would maximize the

probability of mistakes by the electorate. Another application of a similar idea is the

possibility of making mistakes when identifying the “best” bid in general auction envi-

ronments when (potentially multi-dimensional) bids are close.

This paper presents an analytically rigorous way of generating the Apollo effect in a

variety of production environments. The resulting way of thinking about organizations

has, in our view, important implications. Similar effects to those we report for leader-

ship selection are at work for imperfect project selection with unobserved quality and

training investments in human capital. Outside of the production environment, select-

ing a speaker among competing party officials, choosing the most promising among

several architectural designs, or selecting a replacement goalie among sets of alterna-

tives in a soccer team may all give rise to similarly negative effects in terms of expected

overall performance.18

Among potentially fruitful model extensions are a temporal alternative to our prob-

abilistic selection mistakes in which one could model the time cost of decision making

as an increasing function of the proximity of alternatives, exploring the possibilities for

efficient incentive provision in the presence of selection errors, and the study of the

precise characteristics of the possible functions governing selection errors.

Proofs

Proof of Lemma 1. We show that while ∂Y (θ1, θ2)/∂θ1 > 0 always holds, ∂Y (θ1, θ2)/∂θ2 <

0 if and only if the condition of the Lemma holds. In the latter case, there exist

(η1, η2) >> 0 such that (15) holds. Taking the derivative of (14) with respect to θ2

18 The motivation of Woolley et al. (2015) contains a particularly nice example of the performance
of the Russian (Apollo) ice hockey team at the 2014 Sochi olympics. For an account of other
recent dream team failures, see Martinez (2013).
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gives the change in output for an increase in type θ2 as

(42)
f2(θ1, θ2)(y(θ1, e

∗(θ1), e
∗(θ1))− y(θ2, e

∗(θ2), e
∗(θ2)))

+ (1− f(θ1, θ2))
(

e′
∗
(θ2) (y3(θ2, e

∗(θ2), e
∗(θ2)) + y2(θ2, e

∗(θ2), e
∗(θ2)))

+ y1(θ2, e
∗(θ2), e

∗(θ2))
)

in which ye(θ2, e
∗(θ2), e

∗(θ2)) = y2(θ2, e
∗(θ2), e

∗(θ2)) = y3(θ2, e
∗(θ2), e

∗(θ2)). This

change is negative if (16) holds. Moreover and as claimed, the derivative of y (θ1, θ2)

with respect to θ1 is

f1(θ1, θ2) [y(θ1, e
∗(θ1), e

∗(θ1))− y(θ2, e
∗(θ2), e

∗(θ2))]

+ f(θ1, θ2)
[

e′
∗
(θ1)2ye(θ1, e

∗(θ1), e
∗(θ1)) + y1(θ1, e

∗(θ1), e
∗(θ1))

]

> 0.

Proof of Lemma 2. By assumption of symmetry and f(0, θ̂) = 0.

Proof of Proposition 1. From lemmata 1 & 2 and the intermediate value theorem,

every feasible continuous function f has a range in which the slope of the isoquant is

positive.

Proof of Proposition 2. The condition for the isoquant to have positive slope, i.e.,

the derivative of output Y (θ1, θ2) from (23) with respect to θ2 to be negative, is

(43)
z1(θ2, θ1)

z1(θ2, θ1)− z2(θ1, θ2)
< f(θ1, θ2)− f2(θ1, θ2)

z(θ1, θ2)− z(θ2, θ1)

z1(θ2, θ1)− z2(θ1, θ2)
.

Assumptions (20) and (22) imply single-crossing of z1 and z2 since

(44)z1(θ2, θ1)− z2(θ1, θ2) = eh1(θ2)y
h
2 (θ2, e

h(θ2))− el1(θ2)y
l
2(θ2, e

l(θ2))

+yh1 (θ2, e
h(θ2))− yl1(θ2, e

l(θ2)) > 0

where the second line of the last expression is positive due to the assumption that

yh1 (θ, e) > yl1(θ, e) > 0 and eh(θ2) > el(θ2). The first line is positive since e
h′(θ2) > el′(θ2)

and yh2 (θ2, e
h(θ2)) > yl2(θ2, e

l(θ2)), which, in turn follows from

(45)yh2 (θ2, e
h(θ2)) = 2c

′ (
eh(θ2)

)

and yh2 (θ2, e
l(θ2)) = 2c

′ (
el(θ2)

)

,

eh(θ2) > el(θ2), and c′′ > 0. Thus, the left-hand side of (43) exceeds 1 while the

term multiplied with f2(θ1, θ2) on the right-hand side of (43) is positive. Hence, as

f(θ1, θ2) ∈ [1/2, 1], a sufficient condition for the Apollo effect to arise for some type

profile θ1 > θ2 is (28).
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Proof of Proposition 3. Equilibrium effort functions must satisfy

(46)

eL(θ) ∈ argmax
e

Eθ′| leader has type θ

[

y
(

θ, e, eF (θ′)
)

2

]

− c (e) ,

eF (θ) ∈ argmax
e

Eθ′| follower has type θ

[

y
(

θ′, e, eL (θ′)
)

2

]

− c (e) .

We calculate the conditional expectations as

(47)

Pr (Θ ≤ θ′|leader has type θ) =
Pr (Θ ≤ θ′ & leader has type θ)

Pr (leader has type θ)

=

∫ θ′

a
f (θ, θ”) g (θ”) dθ”

∫ b

a
f (θ, θ”) g (θ”) dθ”

.

Therefore, the density of (θ′|leader has type θ) is

(48)
f (θ, θ′) g (θ′)

∫ b

a
f (θ, θ”) g (θ”) dθ”

.

Therefore,

(49)Eθ′|leader has type θ

y
(

θ, e, eF (θ′)
)

2
=

∫ b

a
y
(

θ, e, eF (θ′)
)

f (θ, θ′) g (θ′) dθ′

2
∫ b

a
f (θ, θ”) g (θ”) dθ”

The first-order condition is given by

(50)

∫ b

a
y2

(

θ, e, eF (θ′)
)

f (θ, θ′) g (θ′) dθ′

2
∫ b

a
f (θ, θ”) g (θ”) dθ”

− c′(e) = 0

Therefore, eL(θ) must satisfy (33).

Calculating the conditional expectations for the second case gives

(51)

Pr (Θ ≤ θ′|follower has type θ) =
Pr (Θ ≤ θ′ & follower has type θ)

Pr (follower has type θ)

=

∫ θ′

a
f (θ”, θ) g (θ”) dθ”

∫ b

a
f (θ”, θ) g (θ”) dθ”

=

∫ θ′

a
[1− f (θ, θ”)] g (θ”) dθ”

∫ b

a
[1− f (θ, θ”)] g (θ”) dθ”

.

Therefore, the density of θ′|follower has type θ is

(52)
f (θ′, θ) g (θ′) dθ′

∫ b

a
f (θ”, θ) g (θ”) dθ”

.

Therefore,

(53)Eθ′|follower has type θ

y
(

θ′, e, eL (θ′)
)

2
=

∫ b

a
y
(

θ′, eL (θ′) , e
)

f (θ′, θ) g (θ′) dθ′

2
∫ b

a
f (θ”, θ) g (θ”) dθ”

.
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The first-order condition is given by

(54)

∫ b

a
y3

(

θ′, eL (θ′) , e
)

f (θ′, θ) g (θ′) dθ′

2
∫ b

a
f (θ′, θ) g (θ′) dθ′

− c′(e) = 0.

Therefore, we know that eF (θ) must satisfy (34).

Derivation of equilibrium efforts and wages in Example 5.

Assume that both (IR2) and (IC1) bind. Combining the binding (IR2) and (IC1) gives

(55)e(θ2) =
√
2
√

w(y(θ2)), e(θ1) =
θ21(w(y(θ1))− w(y(θ2))) + 4θ22w(y(θ2))

2
√
2θ1θ2

√

w(y(θ2))
.

Inserting these into the binding (IR1) gives

(56)w(y(θ1)) = w(y(θ2))
(θ1 + 2θ2)

2

θ21
.

Inserting this back into the principal’s problem in (41) gives her unconstrained objective

2
√

w(y(θ2))





√
2θ2 +

(θ1 + θ2)θ
r−2
1

(√
2θ21 − 4θ2

√

w(y(θ2))
)

θr1 + θr2
−

√

w(y(θ2))



 .

(57)

Taking the derivative with respect to w2 = w(y(θ2)) and solving results in the pair of

wages

(58a)w(y(θ1)) =
θ21(θ1 + 2θ2)

2
(

(θ1 + 2θ2)θ
r
1 + θr+1

2

)2

2 ((θ1 + 2θ2)2θr1 + θ21θ
r
2)

2 ,

(58b)w(y(θ2)) =
θ41

(

(θ1 + 2θ2)θ
r
1 + θr+1

2

)2

2 ((θ1 + 2θ2)2θr1 + θ21θ
r
2)

2

implying efforts of

(59a)e(θ1) =
θ1(θ1 + 2θ2)

(

(θ1 + 2θ2)θ
r
1 + θr+1

2

)

(θ1 + 2θ2)2θ
r
1 + θ21θ

r
2

,

(59b)e(θ2) =
θ21

(

(θ1 + 2θ2)θ
r
1 + θr+1

2

)

(θ1 + 2θ2)2θr1 + θ21θ
r
2

.
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