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1. Introduction

In the 1950s and 1960s, entomologists at the University of Chicago conducted experiments

with flour beetles. They placed populations of two different species of beetle into jars of flour,

with no effective constraint on either food or space (the two species are depicted in Figure 1).

It was expected that the more biologically “fit” species would dominate; but that is not what

happened. Instead, in short order, in each of many independent experiments, one, or the other,

type of beetle vanished. On close inspection, the reason was determined: it was found that

beetles not only eat their own species’ eggs, they are also yet more prone to eat the eggs of

other species. As a result of this bias, as one species increases relative to the other, it is more

likely to increase yet further.1

Our paper builds a mathematical, promotion-chain model inspired by the behavior of the

beetles in the jars. This model captures the population dynamics of several human situations,

since in several respects, human behavior parallels the behavior of the beetles. A beetle encoun-

tering an egg in the flour jar makes the implicit decision whether to eat the egg or to let it become

an adult beetle like herself. Similarly, in many human institutions, candidates for promotion to a

higher rank (like the egg) are evaluated by current holders of that rank (like the beetle). Also, the

own-species preference of the beetles corresponds to ingroup favoritism/outgroup bias, which

is commonly observed in human promotions.

Our first application is to the evolution of beliefs at the time of a “scientific revolution.”

Such a revolution occurs, according to Kuhn (1996), after the appearance of a new, superior

paradigm. He says that such paradigms tend to appear after accumulations of anomalous ques-

tions regarding an old paradigm commonly held by the scientists in some area. We view one

species of scientist as those who adhere to the new paradigm; and another species of scientist

as those who adhere to the old paradigm. The promotion-chain model describes the population

dynamics of those adhering respectively to the new, or to the old, paradigm. Similar to the

beetles, for whom an egg may turn into an adult, the dynamics of the population of scientists

depends critically on whether advisees trained by established scientists become established sci-

entists themselves. And, similar to the beetles’ bias toward eating the eggs of the other species,

scientists have biases in favor of those of their own paradigm, and against those of the alter-

1Appendix C provides more details about the research on population ecology of flour beetles.
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A. Confused flour beetle B. Red flour beetle

Figure 1: The Flour Beetles Used in the Chicago Laboratory Experiments
Sources: Panel A: Sarefo; multi-license with GFDL (http://www.gnu.org/copyleft/fdl.html) and Creative Com-
mons CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/). Panel B: Eric Day, Virginia Tech.

native paradigm. In our model, these preferences manifest themselves in scientists’ decisions

regarding the grant of tenure.

Our model of population dynamics characterizes the situations under which a new paradigm

will replace an old one. With the beetles, the more biologically fit species does not always pre-

vail. Similarly, in science, because of the ingroup favoritism/outgroup bias, the new, “truer,”

scientifically-more-“fit” paradigm does not necessarily prevail. Convergence among scientists

in belief toward the new paradigm—or toward the old paradigm—depends critically on the dif-

ference between the probability of denying tenure to an old-paradigm candidate and the proba-

bility of denying tenure to a new-paradigm candidate.

Concepts from statistics yield an intuition regarding the nature of this difference. We can

view the grant of tenure as an indirect test of the validity of the paradigm followed by the tenure

candidate. If we take as the null hypothesis that the candidate believes in the more correct

paradigm, then, in the language of statistics, the probability of rejection of an old-paradigm

candidate is the statistical power of the test; and, correspondingly, the probability of rejection

of a new-paradigm candidate is the statistical significance of the test. The difference between

the power of the test and its significance is the Youden index, introduced by Youden (1950).

In our baseline, no-bias model, the convergence of belief to one paradigm or another then

depends upon the sign of the Youden index. With ingroup favoritism/outgroup bias, and with
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other deviations from the baseline model, convergence still depends upon the Youden index. In

these cases, however, the condition on the Youden index needs to be appropriately adjusted to

take into account deviations from the baseline model.

With ingroup favoritism/outgroup bias, the gap between the Youden index and the bias

determines when convergence in belief among scientists is toward the old paradigm, or on the

contrary, toward the new paradigm. For a given composition of the population of scientists,

science is more likely to converge to the truth when the Youden index is larger and the bias is

smaller. This means that sciences with low power and thus low Youden index are more prone to

capture by false paradigms. It also means that science can start converging to the truth if power

suddenly increases.

Our analysis of what causes convergence to new, truer paradigms also leads us to the answer

to another question, which Kuhn poses at the end of The Structure of Scientific Revolutions.

Why, for centuries, has modern science been so continuously successful? There we shall see

the importance of the norm for what it means to be a scientist: that a scientist’s beliefs should

accord with the outcome of high-power tests for the science. Such a norm then gives reason why

promotion to membership in the fellowship of established scientists should, likewise, make use

of such high-power tests, insofar as they are available. Its emphasis on reliance on high-power

tests, and the evidence that comes from them, seems to be one of the special features of science.

An historical example illustrates the use of the concept of high-power tests. Galileo’s new

telescopes, with their increased powers of observation, played a critical role in the adoption of

the heliocentric/rotating-earth cosmology of Copernicus. According to Kuhn (1957), prior to

Galileo, when an observation had not quite fit with the Ptolemaic system, it could be easily

explained away by adding epicycles. With the power of Galileo’s improved telescopes such

explanations became much more difficult to countenance, and adherence to the Copernican

system took off.

Our first application pictures only one promotion: from advisee to tenured scientist. The

paper also has a second application. It considers promotions up an organizational ladder, with

promotions to a higher rung drawn from those in the rung just below, and also with the candi-

dates judged by those already in the next-higher rung. Egg-eating bias can result, as the number

of rungs in the ladder becomes large, in the capture of the top levels by those with inferior

beliefs. And, again, this possibility depends critically on the value of a Youden index.
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2. Related Literature

In our model of science, tenured scientists tend to favor the untenured scientists who adhere to

their view of the world; they also tend to discriminate against those who support another view.

This type of bias, similar to the bias of beetles eating each other’s eggs, has been extensively

documented by sociologists—who call it “homophily”—and by social psychologists—who call

it “intergroup bias.” Sociologists have observed that in many contexts, people tend to connect

with and favor others who are similar.2 While sociologists find that people exhibit homophily

based on demographic or psychological characteristics, social psychologists have found that

even minimal divisions can create strong biases. In the Robbers Cave experiment, intense rival-

ries developed amongst two groups of 11-year-old boys who had been separated into different

cabins in an Oklahoma state park (Sherif et al. 1961). Later Tajfel and his followers showed

that even minimal divisions (for example, telling boys whether they had a preference for Klee

or Kandinsky) would produce such favoritism (Tajfel and Turner 1979, 1986).3

There is also direct evidence that this type of bias operates in the scientific world. According

to Lamont (2009), in academia, people favor others from the same school of thought, just as

we assume in our model. She suggests that such homophily is present in academic evaluations

at every level: admittance to graduate school, performance in coursework, evaluation of thesis,

first job, acceptance of papers, award of grants, invitations to conferences, tenure evaluations,

mentoring. Studies also provide evidence of such bias in scientific peer review (for example,

Mahoney 1977; Travis and Collins 1991).

Homophilic bias is widespread in hierarchical organizations, as we assume in our model of

organizations. In an ethnographic study of a large US corporation, Kanter (1993) has found that

“managers tend to carefully guard power and privilege for those who fit in, for those they see as

‘their kind’ ” (p.48); “excellence . . . was not always the selection criterion” but “predictability

and trustworthiness by virtue of membership in the right group . . . were likely to be the factors in

the choice of the key managers” (p.51); “managers reproduce themselves in kind” (p.63). There

is also homophilic bias in recruiting, along several dimensions: productivity (Burks et al. 2015),

culture (Rivera 2012), and ethnicity (Bertrand and Mullainathan 2004; Oreopoulos 2011).

In addition, our paper contributes to three literatures in economics. In its application to

2For a survey of the research on homophily, see McPherson, Smith-Lovin, and Cook (2001).
3For a survey of the research on intergroup bias, see Haslam (2004) and Dovidio and Gaertner (2010).
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science, this paper contributes to an emerging literature on the theoretical underpinnings of sci-

entific progress. With its focus on the suppression of ideas and scientific progress, it is similar

in concept to Bénabou, Ticchi, and Vindigni (2015), which explains the tensions between sci-

entific progress and religion; opposition to science comes from religion, and is arbitrated by the

state. The two papers are quite different, however. We focus on specific biases in the system

of advancement of scientific careers, whereas Bénabou, Ticchi, and Vindigni focus on a bias

imposed by the State in the presence of a powerful Church.

Brock and Durlauf (1999) have a model that considers the role of “social factors in the

scientific enterprise.” Their paper is similar to ours in explaining equilibria with false belief;

but the basic mechanisms of the two papers are very different. As their basic mechanism,

Brock and Durlauf assume that scientists wish to conform to each other. In contrast, our basic

assumption is derived from a central theme in Kuhn: that scientists are biased in favor of those

who adhere to their own paradigm and resistant to those of the opposite paradigm.

Our paper is also complementary to another paper on the history of science: Bramoullé and

Saint-Paul (2010). In their model of scientific progress, periods of normal science alternate

with periods of scientific revolution. Scientists decide, based on their respective incentives, to

continue working with the old paradigm (normal science) or to create a new one (revolution-

ary science). In contrast, our paper focuses on competition between two given paradigms (a

new one and an old) during a period of revolutionary science. Scientists adhering to the two

different paradigms are variously promoted to established positions, and the allegiance of these

established scientists constitutes the state of scientific knowledge.

The paper also develops a model of shared beliefs in hierarchical organizations. It is par-

ticularly related to Van den Steen (2010), who explores the reasons for homophily in recruiting

and promotion; to Montgomery (1991), who describes the implications of homophilic recruit-

ing for the labor-market outcomes of workers with different abilities and social networks; and to

Besley and Ghatak (2005), who study the design of incentives in organizations in which work-

ers and managers have homophilic preferences. While these papers focus on single homophilic

promotions, in contrast, our paper studies the consequences of chains of such promotions.

More generally, our paper contributes to the literature on the emergence of dysfunctional

beliefs in opinion dynamics.4 In contrast to that literature, which focuses on social learning,

4This literature is surveyed in Bikhchandani, Hirshleifer, and Welch (1998), Jackson (2010, Chapters 7–9), and
Acemoglu and Ozdaglar (2011). A central finding is that informational cascades occur, in which groups herd on
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our paper introduces chains of promotions in shaping social knowledge. In our paper, people do

not learn: those with certain beliefs are promoted to established positions, and the accumulation

of the beliefs of these established experts constitute social knowledge.

3. Model of Science

We present a model describing the evolution of a population of scientists whose beliefs are

split between two paradigms: New and Old. The New paradigm gives a better description of

the world. Scientific knowledge therefore makes progress when a larger fraction of established

scientists believe in the New paradigm. Established scientists are those who have been granted

tenure.

The model is defined by a list of assumptions. Despite the length of the list, the model should

be easy to understand: since it is fashioned after the standard system in academia regarding grant

of tenure, which is likely to be familiar to most readers. The model is basic, but it delivers the

main results and conveys intuition. Section 5.3 will extend the basic model in several directions.

3.1. Two Paradigms

There are two distinct paradigms: New and Old. The New paradigm gives a more correct

description of the world; the Old paradigm gives a less correct description. Each scientist

adheres either to the New, or to the Old, paradigm. A scientist who adheres to a given paradigm

performs empirical and theoretical investigations articulated around this paradigm.

At time t, N(t) tenured scientists believe in the New paradigm; O(t) tenured scientists be-

lieve in the Old paradigm. The fraction of tenured scientists who believe in the New paradigm

is σ(t):

σ(t) =
N(t)

N(t)+O(t)
.

Knowledge is embodied by established scientists, so the strength of a paradigm is measured

by the fraction of its adherents among tenured scientists. Since the New paradigm offers a

wrong beliefs (see Banerjee 1992; Bikhchandani, Hirshleifer, and Welch 1992). These cascades of false belief can
occur when people use Bayesian logic to infer from the previous actions of others; but such cascades may be even
more likely when people are slightly naive in their inference (Eyster and Rabin 2010). False beliefs also emerge in
many other networks, with various learning mechanisms (for example, Bala and Goyal 1998; DeMarzo, Vayanos,
and Zwiebel 2003; Acemoglu, Ozdaglar, and ParandehGheibi 2010; Bloch, Demange, and Kranton 2016).
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superior description of the world, knowledge makes progress when σ(t) becomes closer to 1.

3.2. Beliefs of Tenured Scientists and Advisees

Tenured scientists train advisees at rate λ . Advisees adhere to the same paradigm as their

advisor. During their entire career, scientists adhere to the same paradigm: there is no defection.

Of course, when the New paradigm is invented, a few tenured scientists defect from the Old

paradigm and spontaneously adhere to the New paradigm, maybe because they were dissatisfied

with the Old paradigm and are convinced by the New one. The number of scientists who are

converted early is N(0). We do not model the stage of early adoption—we take N(0) and O(0)

as given. Our focus is on the systematic competition between New and Old paradigms through

the tenure system once early adopters start teaching students about the New paradigm.

Once an advisee is trained, she becomes an untenured scientist and produces research ar-

ticulated around her paradigm. Then she is brought up for tenure. If she receives tenure, she

continues doing research, advises students, and retires at rate δ . If she does not receive tenure,

she quits academia.

3.3. The Quality of Research

The research of scientists is based on the paradigm in which they believe. A scientist uses

her paradigm as a theoretical framework to guide empirical measurement, to explain empirical

observations, to make theoretical predictions, and to further articulate the paradigm.

The quality of a scientist’s research is partially determined by the implications of her paradigm.

The New paradigm offers a more correct description of the world: it generates more fruitful

empirical investigations, explains more observations, makes more accurate predictions, and can

more easily be adjusted to resolve empirical anomalies. As a result, on average, the research

of New scientists is of higher quality than that of Old scientists. However, there is uncertainty

in research quality because no paradigm perfectly describes the real world; depending on the

phenomena studied, the paradigm will be more or less successful and the research of higher or

lower quality.

The research process brings additional uncertainty to the quality of a scientist’s research:

empirical observations are difficult to obtain and subject to measurement error; theoretical ex-
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planations and predictions are hard to formulate; and scientists vary in skill, effort, and imagina-

tion. Hence, research quality is noisy and only partially determined by the underlying paradigm.

3.4. The Tenure Process

The evaluator of a candidate for tenure is randomly chosen from the pool of tenured scientists.

Thus the untenured scientist is evaluated by a scientist with belief in the New paradigm with

probability σ(t) and by a scientist with belief in the Old paradigm with probability 1−σ(t).

Let’s first consider the case with no egg-eating bias in the grant of tenure: that is, tenured

scientists are neither more nor less prone to grant tenure to candidates whose beliefs are in

agreement with their own, than to candidates with the opposite beliefs. In that case, tenure is

entirely determined by the quality of research: all candidates whose research quality is above a

certain threshold are granted tenure; all others are denied.

We denote as α the probability of denying tenure to those who believe in the New paradigm,

and as β the probability of granting tenure to those who believe in the Old paradigm. We have

seen that research quality is noisy: it is affected by luck, the competence of the scientist, and

the accuracy of the paradigm. Hence, not all New candidates are granted tenure and not all Old

candidates are denied. Nevertheless, since the New paradigm is more correct, New candidates

tend to produce better research than Old candidates. New candidates are therefore more likely

to receive tenure than Old candidates: 1−α ≥ β .

3.5. Egg-Eating Bias

To the concepts of α and β we now add the role of the egg-eating bias, ε > 0. As the untenured

scientist believes in the New or Old paradigm, she accordingly uses that paradigm as one basis

for her empirical or theoretical investigations. And, then, the agreement—or disagreement—of

belief between the untenured scientist and her tenured evaluator affects the tenure decision. A

New evaluator has increased probability ε (relative to the unbiased test) of giving tenure to an

advisee who believes in the New paradigm; and she has decreased probability ε of giving tenure

to an advisee who believes in the Old paradigm. Symmetrically, an Old evaluator has decreased

probability ε (relative to the unbiased test) of giving tenure to an advisee who believes in the

New paradigm; and she has increased probability ε of giving tenure to an advisee who believes
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in the Old paradigm.

Formally, when tenured scientists are biased, the tenure probabilities are as follows. A

New evaluator denies tenure to a New scientist with reduced probability α − ε . On the other

hand, an Old evaluator denies tenure to a New scientist with increased probability α + ε . A

New evaluator grants tenure to an Old scientist with reduced probability β − ε . Finally, an Old

evaluator grants tenure to an Old scientist with increased probability β + ε . Thus, scientists are

biased in favor of applicants who support their view of the world and against applicants who

support another view of the world.5

4. Analogy with Statistics and Youden Index

In practice nobody knows whether the New paradigm is more correct than the Old. Thus the

evaluation of a tenure case can be interpreted as a statistical test, in the tradition of Neyman and

Pearson (1933), in which the null hypothesis is that the tenure candidate believes in the more

correct paradigm, and the alternative hypothesis is that the tenure candidate believes in the less

correct paradigm. Furthermore, granting tenure can be interpreted as failing to reject the null

hypothesis, while denying tenure can be interpreted as rejecting the null hypothesis. Using this

analogy with statistics, we introduce three concepts:

DEFINITION 1. The statistical significance of the tenure test is the probability of denying

tenure to a New scientist when there is no egg-eating bias: α . The statistical power of the

tenure test is the probability of denying tenure to an Old scientist when there is no egg-eating

bias: 1−β . The Youden index of the tenure test is J = 1−α−β .

The tenure test assesses many attributes of the tenure candidate beside her belief in the better,

or worse, paradigm. Nevertheless, in the absence of egg-eating bias, α can be considered as the

probability of Type I error, and β as the probability of Type II error. The analogy with statistics

is exact: α is the probability of rejecting the null even though the null is correct, and β is the

probability of accepting the null even though the null is incorrect. For this reason, following

standard terminology in statistics, we refer to α as the statistical significance of the tenure test

and, correspondingly, to 1−β as the statistical power of the tenure test. Moreover, in statistics,

5The bias ε is bounded such that the four probabilities α + ε , α− ε , β + ε , and β − ε remain in (0,1).

9



the Youden index is the statistical power of the test minus its statistical significance.6 Similarly,

we denote as a Youden index the difference between power and significance of the tenure test.

The Youden index measures the ability of tenure tests to distinguish between true and false

paradigms. It will play a critical role in the analysis. When no scientist believing in the Old

paradigm is given tenure, β = 0 and J = 1−α . At the other extreme, all scientists receive

tenure with the same probability, so β = 1−α and J = 0; then, the tenure evaluation does not

distinguish between Old and New paradigms. Between these two extremes, a New scientist

coming up for tenure is more likely to get it than an Old scientist, but Old scientists have some

chance of receiving tenure: 0 < β < 1−α and 0 < J < 1−α .

When scientists are not biased, α and β are the probabilities of type I and type II errors.

When scientists are biased, the tenure probability for a young scientist depends on the identity

of the tenured scientist who conducts the tenure evaluation: so that the actual probabilities of

type I and type II errors depend on σ , the fraction of tenured scientists who believe in the New

paradigm. With probability σ an untenured New scientist is evaluated by a New evaluator, who

denies her tenure with probability α − ε; with probability 1−σ she is evaluated by an Old

evaluator, who denies her tenure with probability α +ε . Hence, with egg-eating bias, the actual

probability of type I error—the probability of denying tenure to New scientists—is given by

(1) α
ad j(σ) = σ(α− ε)+(1−σ)(α + ε) = α +(1−2σ)ε.

Similarly, with probability σ an untenured Old scientist is evaluated by a New evaluator, who

grants her tenure with probability β − ε; with probability 1− σ she is evaluated by an Old

evaluator, who grants her tenure with probability β +ε . Hence, with egg-eating bias, the actual

probability of type II error—the probability of granting tenure to Old scientists—is given by

(2) β
ad j(σ) = σ(β − ε)+(1−σ)(β + ε) = β +(1−2σ)ε.

With egg-eating bias, the probabilities of type I and type II errors are adjusted to capture the

social forces at play in the tenure process, and the Youden index must be adjusted accordingly:

6The Youden index is used to evaluate binary classifiers (statistical methods to classify observations in two
distinct categories, such as “healthy” or “sick”). It is popular in medicine (Armitage, Berry, and Matthews 2002,
p. 693) and in machine learning (Murphy 2012, p. 183).
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DEFINITION 2. The adjusted Youden index of the tenure test is

(3) Jad j(σ) = 1−α
ad j(σ)−β

ad j(σ) = J+2(2σ −1)ε.

Without bias, αad j(σ) = α , β ad j(σ) = β , and Jad j(σ) = J. But with bias, αad j(σ),

β ad j(σ), and Jad j(σ) depend on the composition of the population of tenured scientists, mea-

sured by σ .

The adjusted Youden index is one minus the probability of type I error minus the probability

of type II error. A high index means that there are few type I and type II errors: New scientists

get tenure with high probability; Old scientists get it with low probability. Conversely, a low

index means that there are many type I and type II errors.

The adjusted Youden index is linearly increasing in σ , from Jad j(0) = J−2ε to Jad j(1) =

J+2ε . The adjusted Youden index is minimized when σ = 0, because then all tenured scientists

believe in the Old paradigm, and these scientists are biased in favor of young scientists who also

believe in it and are biased against those who believe in the New paradigm. On the contrary, the

adjusted Youden index is maximized when σ = 1, because then all tenured scientists believe in

the New paradigm, and these scientists are biased in favor of young scientists who also believe

in it and are biased against those who believe in the Old paradigm.

If ε ≤ J/2, the adjusted Youden index is positive for all σ ∈ (0,1). On the other hand, if

ε > J/2, the index is negative for σ < σ∗, zero at σ = σ∗, and positive for σ > σ∗, where the

threshold σ∗ is defined by

(4) σ
∗ =

1
2

(
1− J

2ε

)
.

This threshold is a critical element in the analysis below.

5. Analysis of the Model of Science

We analyze our model of science to determine under which conditions the New paradigm—

which provides a better description of the world—eventually prevails, and conversely under

which conditions the Old paradigm prevails. The beliefs of the population of scientists depend

critically on two parameters: the Youden index J and egg-eating bias ε .
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5.1. Science Without Egg-Eating Bias

We begin by analyzing the model in the absence of egg-eating bias (ε = 0). This analysis

provides a useful point of reference. The evolution toward New paradigm or Old paradigm in

our model depends critically on the outcome of a basic horse race: regarding which species of

scientists—New or Old—is increasing at the faster rate.

The role of this horse race is gleaned from the definition of σ as the fraction of New sci-

entists in the total population: σ(t) = N(t)/ [N(t)+O(t)]. Differentiating this definition with

respect to t, and a bit of algebraic juggling, yields

(5) σ̇(t) = σ(t)(1−σ(t))
(

gN−gO
)
,

where gN ≡ Ṅ(t)/N(t) is the growth rate of tenured scientists with New beliefs, and gO ≡
Ȯ(t)/O(t) is the growth rate of tenured scientists with Old beliefs. The behavior of σ̇ , in turn,

can be easily calculated, since gN and gO are easily inferred from the description of the model.

The growth of tenured New scientists is the difference between the rate of advancement into

tenure of New scientists and their rate of death. The rate of advancement into tenure of New

scientists is the product of two terms: the first term being the fraction of New advisees surviving

into tenure, (1−α), where α is the statistical significance of the tenure test; the second term

being the spawning rate of New advisors, λ . The death rate of tenured New scientists is δ . As

a result, the growth rate of tenured New scientists is

gN = (1−α)λ −δ .

Similarly, the growth rate of tenured Old scientists can be calculated as

gO = βλ −δ .

The first term is the product of the fraction of Old advisees surviving into tenure, β , and the

spawning rate of Old advisors, λ . (Recall that 1−β is the statistical power of the tenure test, so

that a fraction β of believers in the Old paradigm will be wrongly granted tenure.) The second

term is the death rate, δ , of Old scientists with tenure.
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Using (5) and the expressions for gO and gN yields

(6) σ̇(t) = λσ(t)(1−σ(t))J.

The term J = 1−α − β is the Youden index of the tenure test. The index determines the

differential rate of increase of New relative to Old scientists in our model, because it governs

the difference between the rate at which New scientists are granted tenure (1−α) and the rate

at which Old scientists are granted tenure (β ).

The differential equation (6) is a well-known logistic equation.7 The equation immediately

leads to the following proposition:

PROPOSITION 1. Without egg-eating bias (ε = 0) there are two possible regimes. When the

Youden index is zero (J = 0), the composition of the population of scientists is constant over

time (σ(t) = σ(0) for all t). When the Youden index is positive (J > 0), the New paradigm

eventually prevails (limt→∞ σ(t) = 1).

The formal proof is in Appendix A, but the intuition is simple: if J = 0, σ̇ = 0 so σ remains

constant; if J > 0, on the other hand, σ̇ > 0 whenever σ ∈ (0,1), so σ grows until it reaches 1.

The proposition occasions three remarks. First, there can only be scientific progress—that

is, convergence toward the New paradigm—if the Youden index of the tenure test is positive.

That is, convergence toward true belief depends not just upon the test’s statistical power, which

is 1−β ; it also depends on its statistical significance, α . Furthermore, the speed of convergence

toward true belief is faster when the Youden index is larger.

Second, when the fraction of New scientists converges to 1, several things can happen to

the populations of New and Old scientists. If (1−α)λ > δ > βλ , the number of Old scientists

converges to 0, whereas the number of New scientists converges to ∞. If (1−α)λ > δ = βλ ,

the number of Old scientists is constant, whereas the number of New scientists converges to ∞.

If (1−α)λ = δ > βλ , the number of New scientists is constant, whereas the number of Old

scientists converges to 0. If (1−α)λ > βλ > δ , the size of both groups goes to ∞, but the

fraction of New scientists in the population goes to 1. Finally, if δ > (1−α)λ > βλ , the size

7The logistic differential equation is widely used. It was introduced by Verhulst (1845) in the 19th century
to describe population growth. Verhulst’s work was later popularized by Lotka (1925). The logistic differential
equation was rediscovered twice in the 20th century: first by McKendrick and Pai (1912) in their study of the
growth of micro-organisms, and then again by Pearl and Reed (1920) in their study of the US population growth.
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of both groups goes to 0, but the fraction of New scientists in the population goes to 1.

Third, equation (6) points to another possibility than evolution to true belief, even with a

presumably unbiased process of evaluation, such as that described by the grant of tenure. Such

a process will lead to false belief if it uses a wrong-minded test: if the Youden index is negative,

σ will not converge to 1; instead, it will converge to 0.

5.2. Science With Egg-Eating Bias

We now see how the properties of the model are altered by the presence of egg-eating bias.

Now, because the New and the Old scientists with tenure are the evaluators; because they eval-

uate untenured scientists differently; and because the evaluators are chosen randomly from the

population of tenured scientists, the growth rates of tenured New scientists and of tenured Old

scientists depend upon the fraction σ of New scientists in the population of tenured scientists.

We therefore denote these growth rates as gN(σ) and gO(σ). Again (5) will hold so that

(7) σ̇(t) = σ(t)(1−σ(t))
[
gN(σ(t))−gO(σ(t))

]
.

With egg-eating bias the growth rates gN and gO depend on σ , which was not the case

without egg-eating bias. It remains to obtain formulas for gN(σ) and for gO(σ). We can easily

calculate gN(σ) as follows:

gN(σ) =
(

1−α
ad j(σ)

)
λ −δ .

The first term reflects that the New scientists are training advisees at rate λ ; and with probability

1−αad j(σ), where αad j(σ) is given by (1), such advisees are granted tenure. The second term

reflects that tenured scientists are retiring at rate δ . Similarly we can calculate gO(σ):

gO(σ) = β
ad j(σ)λ −δ .

The first term reflects that the Old scientists are training advisees at rate λ ; and with probability

β ad j(σ), where β ad j(σ) is given by (2), such advisees are granted tenure. The second term

reflects that tenured scientists are retiring at rate δ .
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These equations give us

gN(σ)−gO(σ) = λJad j(σ),

where Jad j(σ) is the adjusted Youden index, given by (3). Accordingly, (7) can be written as

(8) σ̇(t) = λσ(t)(1−σ(t))Jad j(σ(t)).

In the same way that the Youden index J determined the evolution of the share of New tenured

scientists when egg-eating bias is absent, the adjusted Youden index Jad j(σ) determines the

evolution of the share of New tenured scientists when egg-eating bias is present. The adjusted

Youden index plays this role because it governs the difference between the rates at which New

scientists and Old scientists are granted tenure: 1−αad j(σ) minus β ad j(σ).

Unlike the unadjusted Youden index J, the adjusted Youden index Jad j(σ) is not constant:

it is linearly increasing in σ . Thus, egg-eating bias makes the dynamics of the model more

complex: the differential equation governing the dynamics of the population of scientists (equa-

tion (8)) is not a regular logistic equation like equation (6); instead, it is a logistic equation with

threshold. The threshold is the value σ∗, defined by (4), at which the adjusted Youden index is

0. When the threshold is between 0 and 1, the dynamics of the model are fundamentally altered:

PROPOSITION 2. With egg-eating bias (ε > 0), there are two possible regimes, depending on

the amount of bias relative to the Youden index (J). When ε ≤ J/2, the New paradigm eventually

prevails (limt→∞ σ(t) = 1), irrespective of the initial fraction of New tenured scientists (σ(0)).

But when ε > J/2, the eventual outcome is determined by the initial value of the fraction of New

tenured scientists relative to the threshold σ∗ given by (4). If σ(0) > σ∗, the New paradigm

prevails (limt→∞ σ(t) = 1); but if σ(0)< σ∗, the Old paradigm prevails (limt→∞ σ(t) = 0).

The formal proof is given in Appendix A, but the logic is simple. If there was no egg-eating

bias (top row in Figure 2), the adjusted Youden index Jad j would always be positive and equal to

the regular Youden index J. As a consequence, σ̇ would be positive for all values of σ between

0 and 1, and σ would always grow until it reaches 1. This is the case covered by Proposition 1.

In this proposition, we consider the case with egg-eating bias. When 0 < ε ≤ J/2 (middle row

in Figure 2), the adjusted Youden index is positive for all values of σ between 0 and 1, so σ̇ is

also positive for these values, and σ grows until it reaches 1. On the other hand, when ε > J/2

(bottom row in Figure 2), the sign of the adjusted Youden index depends on whether σ is above
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Figure 2: Adjusted Youden Index and Scientific Progress
Notes: The panels on the left display the adjusted Youden index as a function of the fraction of New tenured
scientists: Jad j(σ) = J +2(2σ −1)ε . The panels on the right display the phase lines for the differential equation
governing the dynamics of the fraction of New tenured scientists: σ̇ = (1−σ)σJad j(σ)λ . The three rows consider
three values of the egg-eating bias: ε = 0, ε < J/2, and ε > J/2.
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or below σ∗. For all values of σ greater than σ∗, σ̇ is positive, so σ converges to 1; for all

values of σ less than σ∗, σ̇ is negative, so σ converges to 0.

Proposition 2 occasions five remarks. First, even if the Youden index of the tenure test J

is positive, if the bias of scientists is sufficiently large, scientific opinion may gravitate toward

the Old paradigm. This is true even though the Old paradigm describes the world less correctly

than the New paradigm, and Old scientists do not have a larger bias than New scientists. This

is because, once there are sufficiently many tenured Old scientists, and given that they are

sufficiently biased against New scientists and in favor of Old scientists, the tenure probability of

New scientists falls below that of Old scientists (formally: the adjusted Youden index becomes

negative). Thus the number of tenured Old scientists grows faster than the number of tenured

New scientists. This shows one effect of biased eating of each other’s eggs. It follows from (4)

that an increase in egg-eating bias also raises the threshold σ∗ below which science converges

to falsehood.

Second, the proposition highlights the importance of the Youden index J—which is the

statistical power minus statistical significance of the tenure test. Indeed, for a given egg-eating

bias ε , branches of science with low statistical power and thus low Youden index are at greater

risk of convergence to falsehood. One, they are more likely to be in a regime where convergence

to falsehood is a possibility (because it is more likely that J < 2ε when J is lower). And two, in

this regime, the population of scientists is more likely to be in the region where convergence to

falsehood occurs (because the threshold σ∗ is higher when J is lower).

Third, the model also points to an important determinant of scientific revolutions. We can

compute the increase in Youden index required to start a scientific revolution. Assume that

the share of New scientists is σ and is converging to 0. To initiate a scientific revolution, we

need the share of New scientists to start converging to 1. This requires that the Youden index J

increases sufficiently to be above the threshold

J∗ = 2(1−2σ)ε.

The threshold is computed such that the adjusted Youden index Jad j(σ) is just 0 at σ . When

the regular Youden index J is above the threshold J∗, the adjusted Youden index at σ is positive

and science starts converging to the truth.

Fourth, convergence in science is often interpreted as a sign of progress. In the model, this
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is not necessarily the case: with egg-eating bias, there may be convergence toward Old belief.

Fifth, convergence in the model may be surprising for another reason: because there may

be no statistical or social reason to expect a single paradigm to prevail. Consider a situation in

which the Youden index is zero (J = 0). Thus there is no statistical reason why either of the two

paradigms should dominate. Further, since New scientists have the same bias as Old scientists,

there is no social reason why either of the two paradigms should dominate. Nevertheless, egg-

eating bias interacts with σ , thereby introducing instability into the system. Thus, if the initial

fraction of New scientists is below σ∗ = 1/2, science converges to Old beliefs; and if the initial

fraction of New scientists is above σ∗ = 1/2, science converges to New belief.

5.3. Extensions

Here we propose three extensions of the basic model of science and summarize their properties.

These extensions enrich the model by providing additional mechanisms that can pull science

toward the truth or toward falsehood. All the results are derived in Appendix B.

Heterogeneous Egg-Eating Bias. Given that Old and New scientists have different views of

the world, it is natural to allow them to have different egg-eating biases. The results can easily

be generalized if New and Old scientists have different biases.

We assume that a New evaluator has an increased probability εN of giving tenure to an

advisee who believes in the New paradigm; and she has a decreased probability εN of giving

tenure to an advisee who believes in the Old paradigm. Symmetrically, an Old evaluator has

a decreased probability εO of giving tenure to an advisee who believes in the New paradigm);

and she has an increased probability εO of giving tenure to an advisee who believes in the Old

paradigm. With distinct egg-eating biases, the qualitative properties of the model remain the

same, but a few quantitative properties need to be adjusted.

First of all, increased bias by the Old scientists (εO) make it more likely to be in a regime in

which convergence to the Old paradigm is possible. Indeed, when εO ≤ J/2, the New paradigm

eventually prevails, irrespective of the initial fraction of New tenured scientists, but when εO >

J/2, the Old paradigm eventually prevails if the initial fraction of tenured Old scientists is large

enough. It is noteworthy that the bias of New scientists (εN) has no effect on the possibility of

convergence to Old belief. This result occurs because for σ close to zero there are almost no
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New scientists to make this bias effective.

Nevertheless, once science is in a regime in which convergence to Old belief is possible,

εN does affect gravitation toward Old belief. With heterogeneous bias, the threshold σ∗ that

separates initial conditions leading to the New or the Old paradigm is given by σ∗ = (εO−
J/2)/(εN + εO). Hence, an increase in εN unambiguously decreases the threshold σ∗, and

thus reduces the likelihood that science gravitates toward Old belief. Correspondingly, in this

regime, an increase in εO increases σ∗ and thus raises the likelihood that science gravitates

toward Old belief.

Finally, we find that to start a scientific revolution, the Youden index J must increase suffi-

ciently to be above the threshold J∗ = 2
[
εO−σ

(
εO + εN)]. Hence, an increase in the Youden

index triggers a revolution for any σ > 0 only if the bias of Old scientists is below 1/2. If

the bias of Old scientists is above 1/2, even a Youden index of 1 (the maximum value) is not

sufficient to trigger a scientific revolution as σ gets close to 0. Thus, a large enough bias from

Old scientists can prevent knowledge from ever converging to the truth; that is, there exist initial

conditions such that for any Youden index beliefs converge to the Old paradigm.

Heterogeneous Productivity. The race towards having a larger number of students, papers,

and grants suggests that productivity is an important aspect of knowledge creation. Maybe

some paradigms lend themselves to be more productive and produce more students. For in-

stance, maybe more complicated paradigms open the door to many extensions, which favor the

productivity of scientists in that paradigm. In this section we extend the model by introduc-

ing different productivities across paradigms. We find that differential productivity affects the

Youden index and therefore the growth of the scientific field. Indeed, productivity interacts with

statistical power and bias in determining whether science converges to the truth.

Productivity determines the rate at which a tenured scientist trains advisees. We assume that

tenured scientists believing in the New paradigm train advisees at rate λ N , and tenured scientists

believing in the Old paradigm train advisees at rate λ O. With heterogeneous productivity, the

Youden index needs to be redefined to combine three elements: statistical power, statistical

significance, and productivity. The Youden index becomes

J = 1−α− λ O

λ N β .
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Thus, an increase in the productivity of the Old paradigm has the same effect as a reduction

in the statistical power of the tenure test, and conversely, an increase in the productivity of the

New paradigm has the same effect as an increase in statistical power.

Given the new expression for the Youden index, a critical implication of heterogeneous

productivity is that even if the statistical power of the tenure test is larger than the statistical

significance (1−β > α) and there is no egg-eating bias, the Old paradigm may prevail. This

happens when Old scientists are sufficiently more productive that the Youden index J becomes

negative. The formal condition for the Old paradigm to prevail is λ O/λ N > (1−α)/β . If

Old scientists are not productive enough, such that the Youden index remains positive, the New

paradigm eventually prevails.

When there is egg-eating bias, the population dynamics of science are also affected in im-

portant ways by heterogeneous productivity. First, consider a small egg-eating bias:

ε ≤ |J|
1+λ O/λ N .

Then if the Youden index J is negative (λ O/λ N > (1−α)/β ), the Old paradigm eventually

prevails, irrespective of initial conditions. But if the Youden index J is positive (λ O/λ N <

(1−α)/β ), the New paradigm eventually prevails, irrespective of initial conditions.

Second, consider a large egg-eating bias:

ε >
|J|

1+λ O/λ N .

Then initial conditions determine whether science converges to Old or New belief. The thresh-

old σ∗ that separates initial conditions leading to the New or the Old paradigm is given by

σ
∗ =

1
2

[
1− J

(1+λ O/λ N)ε

]
.

Given that J = 1−α−(λ O/λ N)β , the threshold σ∗ is increasing in λ O/λ N . Hence, an increase

in λ O/λ N unambiguously increases the threshold σ∗, and thus raises the likelihood that science

gravitates toward Old belief. Correspondingly, a decrease in λ O/λ N lowers σ∗ and thus reduces

the likelihood that science gravitates toward Old belief.

Overall, productivity has an important effect on the evolution of scientific belief. Beyond
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statistical power and bias, productivity provides an additional mechanism that can pull science

toward the truth or toward falsehood. The paradigm with the highest productivity has a signifi-

cant edge: in any circumstances, a paradigm whose productivity increases becomes more likely

to capture the scientific field.

Defections. In the results presented above, when one paradigm prevails (Old or New), every-

body believes in it: there are no scientists who believe in the other paradigm. In reality, however,

there is always a small group of scientists who work on the alternative, unpopular paradigm.

This group of scientists could be composed of scientists attached to the Old paradigm after a

revolution. Or it could be composed of scientists developing and improving the New paradigm

before a revolution. Then, a scientific revolution occurs when the statistical power of the tenure

test increases, allowing this group of scientists to expand and eventually dominate the field,

until the next revolution overturns them.

A simple way to capture this additional feature is to assume that among the scientists trained

by an advisor, a small share defect to the opposite paradigm. When there are advisees who do

not follow in the footsteps of their advisors, the results of the model are modified in a natural

fashion to become less extreme. The main implication of this assumption is that the steady

states in which all scientists believe in the same paradigm disappear. Instead, in any steady

state, a positive share of scientists are in the minority and believe in the unpopular paradigm.

We assume that tenured scientists train two types of advisees, New and Old. They train

advisees of their type at rate λ and advisees of the opposite type at rate µ . We assume that

advisors train fewer defecting advisees than regular advisees: µ ≤ λ .

When the Youden index is zero, there is egg-eating bias, and there is no defection, we have

seen what happens: science converges to the New paradigm if initially New scientists are more

than half, and it converges to the Old paradigm if initially New scientists are less than half.

With a little bit of defection (µ/λ ≤ ε/(2β − ε)), the results are similar but not as extreme. If

initially New scientists are more than half, science converges to a steady state where the vast

majority, but not all, of the scientists believe in the New paradigm. If initially Old scientists are

more than half, science converges to a steady state where the vast majority, but not all, of the

scientists believe in the Old paradigm. Once defection becomes frequent (µ/λ > ε/(2β − ε)),

the results change. Then, science converges to a state of disagreement in which scientists are
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equally split between New and Old paradigms, irrespective of initial conditions.

We also know what happens when the Youden index is positive but low, there is egg-eating

bias, and there is no defection. In that case, science may converge to the New paradigm or to the

Old paradigm depending on initial conditions. With a little bit of defection (µ/λ ≤ ε/(2β−ε)),

the result remains the same except that the two possible steady states do not have only New sci-

entists or only Old scientists but they have a majority of New scientists or a majority of Old

scientists. When defections are frequent (µ/λ > ε/(2β − ε)), the results change. Then, irre-

spective of initial conditions, science converges to a unique steady state in which New scientists

are in a majority.

Finally, we know what happens when the Youden index is large, there is egg-eating bias,

and there is no defection. In that case, science converges to the New paradigm irrespective of

initial conditions. With defection, the results remain the same except that the steady state does

not have only New scientists, but a majority of them.

6. Discussion of the Model of Science

This section further justifies our choice of model and also discusses its implications.

6.1. Faithful Representation of Kuhn

Our model gives a faithful representation of what Kuhn (1996) calls “revolutionary science”—

in contrast to “normal science.” Most of the time, scientists engage in normal science. Normal

science is the determination of important facts; match of the existing paradigm with these facts;

and more detailed articulation of the paradigm (p. 34). During periods of normal science, sci-

entists work within the framework of an accepted paradigm, which is “revealed in its textbooks,

lectures, and laboratory exercises” (p. 43), and they aim to improve the paradigm and its fit with

nature. Our model focuses, instead, on periods of “revolutionary science”: when two paradigms

compete. According to Kuhn, such phases of scientific progress arise in response to discovery

of anomalies inconsistent with the old paradigm (p. 66, p. 84). In this phase of science, the

decision to reject one paradigm is also the decision to accept another (p. 77).

In our model, scientific knowledge is embodied by established scientists, with the strength

of a paradigm indexed by the fraction of scientists adhering to it. This representation is also
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faithful to Kuhn, who says that a paradigm becomes prevalent only after its acceptance by the

scientific community. Scientific revolutions are battles of old versus new paradigms for the

allegiance of that community (p. 94, p. 145)—in agreement with the central role of the variable

σ in our model.

In Kuhn’s model, the new followers of a paradigm are not converts from the old one, but are

freshly-minted scientists who adhere to the new. Following Kuhn, in periods of normal science,

prior to the intrusion of the new paradigm, all scientists will have the same interpretation of the

basic science, which, in the 18th and 19th centuries, was represented by the scientific “classics,”

and, in more modern times, is represented by the textbooks (pp. 19–20).

In our model, adherence to the New Paradigm comes from two sources. A presumed small

number of tenured scientists immediately convert to the New paradigm at time 0, perhaps be-

cause of individual conviction of its superiority to the Old. And then over time, advisees whose

advisors believe in the New paradigm join their ranks.8

Such a representation corresponds to Kuhn’s views regarding the origins of New-paradigm

adherents. Thus he approvingly quotes Planck: “a new scientific truth does not triumph by con-

vincing its opponents and making them see the light, but rather because its opponents eventually

die, and a new generation grows up that is familiar with it” (p. 151).9

Kuhn also emphasizes “resistance” against new paradigms by the adherents of the old

paradigm. Such resistance is represented by the parameter ε in our model. Those biases are,

of course, a form of ingroup favoritism/outgroup bias, which has been documented in many

different guises by psychologists and sociologists.

In sum, our model—parsimoniously, although perhaps a bit coarsely—captures Kuhn’s de-

scription of “scientific revolution.”

8In a slight extension of our model, advisees who defect from the Old paradigm are an additional source of
adherents to the New paradigm.

9Similarly, Kuhn also quotes Darwin: “Although I am fully convinced of the truth of the views given in this
volume . . . , I by no means expect to convince experienced naturalists whose minds are stocked with a multitude of
facts all viewed, during a long course of years, from a point of view directly opposite to mine. A few naturalists,
endowed with much flexibility of mind, and who have already begun to doubt the immutability of species, may be
influenced by this volume; but I look with confidence to the future, to young and rising naturalists, who will be
able to view both sides of the question with impartiality” (p. 151).
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6.2. Power of Test and Acceptance of New Paradigm

At the end of The Structure of Scientific Revolutions, Kuhn left unanswered a question he con-

sidered important: why has science been continually so very successful for a period of cen-

turies? In our model, the share of New scientists in the community of tenured scientists con-

verges to one if the Youden index of the tenure test outweighs the effects of the egg-eating

bias.

There are two reasons why the Youden index could be low. First, there may be no high-

power scientific tests that will discriminate between the old and the new paradigm. But, second,

even if such tests do exist, such tests may be play little, or no role, in promotions into senior

fellowship.

But, returning to Kuhn’s question, two special features of science have played an important

role in its rapid progress. Historically, the physical sciences have made remarkable discoveries

of high-power tests capable of distinguishing between old and new paradigms. Additionally,

norms of science say that tenure and other advancements should be based on high-power tests,

if they exist: because, as we will see, being a scientist entails adhering to these tests.

A series of examples will illustrate these points. Two examples of scientific revolutions

will demonstrate the near-coincidence of discoveries of high-power tests and adoption of new

paradigms. We will also see an example of demotion from the fellowship of scientists, which

demonstrates the norm of adherence to evidence from high-power tests. But we shall also

look at examples in which new paradigms have been adopted only after long delays. Three

examples from medicine illustrate how failure to use random control trials resulted in continued

use of harmful treatments. Another example, from macroeconomics, shows a new paradigm

that languished for almost half a century, in the absence of any observations of sufficiently high

power to distinguish between the new paradigm and the old.

6.3. High-Power Tests in Two Scientific Revolutions

The scientific revolutions emphasized by Kuhn—by Copernicus, Newton, Lavoisier, Darwin,

and Einstein—were all supported, at least in due course, by high-power scientific tests (Kuhn

1996, pp. 148–153).

Consider, for example, adoption of the heliocentric theory of the solar system. The the-
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ory had languished for almost 2,000 years before Copernicus; and, even after the publication

of De Revolutionibus, “Copernicanism made few converts for almost a century” (Kuhn 1996,

p. 150). This lack of converts does not mean that Copernicus had no immediate influence on

astronomers. Only eight years after its publication, Erasmus Reinhold based important new

astronomical tables on the methods of De Revolutionibus. But neither Reinhold nor most other

contemporary astronomers believed in the moving earth (Kuhn 1957, pp. 186–188). A first

step in gaining acceptance of this central Copernican idea came some 50 years after his death,

with observations of the elliptical orbits of the planets by Kepler, who Repcheck (2007, p. 188)

called “the first true Copernican after [his devoted disciple] Rheticus.”10 But the real breakers-

of-the-ice were observations from Galileo’s new high-resolution telescopes, since the observed

movements of the moons of Jupiter and Saturn were difficult to reconcile with a stationary earth.

The Lavoisier revolution in chemistry gives a second clear example of the role of the power

and significance of tests for the science and the lag to new-paradigm adoption. To recall,

Lavoisier’s new paradigm concerned combustion: occurring when flammable materials com-

bined with a component of the air, which he called “oxygène.” In contrast, the old paradigm

viewed combustion as occurring when flammable materials released their “phlogiston.” The

difference between the two could be tested through the use of vacuums and precise weights.

The high power and significance of these tests resulted in only a short lag (of just a few years)

for acceptance of the new paradigm.11

6.4. Being a Scientist and the Norm of Abiding by High-Power Tests

The Lavoisier revolution in chemistry does not only illustrate the role of high power test in

scientific revolution. Kuhn’s reaction to Lavoisier’s rival, Priestley, illustrates the existence of

a scientific norm: that being a scientist entails acceptance of hypotheses that are confirmed

by high-power tests. Kuhn calls out Lavoisier’s rival, Priestley, for being “unreasonable” and

“illogical”: because despite the findings, backed by high-power test, Priestley resolutely contin-

ued his belief in the old, “phlogiston” paradigm. Kuhn says Priestley “ceased to be a scientist”

10This view of Kepler as a Copernican is in agreement with Kuhn (1957), except that Kuhn would also include
Kepler’s teacher, Michael Maestlin. Maestlin, who did not teach heliocentrism to his students, is called a “stealth
Copernican” by Repcheck (2007, p. 186).

11See Kuhn (1996, p. 147): “Though neither Priestley’s nor Lavoisier’s theory, for example, agreed precisely
with existing observations, few contemporaries hesitated more than a decade in concluding that Lavoisier’s theory
provided the better fit of the two.”

25



(p. 159). In our model, the test for tenure regards promotion of the new trainees into the se-

nior fellowship of scientists. Regarding Priestley, Kuhn, in his role as historian of science, has

engaged in a rare demotion: because Priestley’s judgment did not accord with the results from

high-power scientific tests.

6.5. Eschewal of Statistics in the History of Medicine

The history of medicine gives us some examples in which high-power tests were available; but

practicing physicians eschewed these tests, rather than embraced them; and they thus played no

significant role in promotion to practicing physician. Physicians had a different norm regarding

promotion from scientists. Rather than the norm that the candidates’ contribution to science

should be evaluated with an eye on the results of high-power tests for the science, physicians’

criteria for promotion rested on candidates’ ability to carry out existing medical practice. Our

three examples are the persistence of bloodletting, of radical mastectomies, and of hormone

replacement therapy: amid disavowal of statistical methods for determining their efficacy.

As early as the 1830s Pierre-Charles-Alexandre Louis, a practicing physician in Paris, took

matched samples of pneumonia patients: one sample, with bloodletting in the first four days

of the disease; the other sample, with bloodletting in days five to nine. Louis’ results, at the

very least, should have called for further testing, since he found a 76 percent higher fatality

rate for those with early treatment (Rangachari 1997, p. 281). That difference was difficult

to explain if bloodletting was as beneficial to pneumonia patients as it was cracked up to be:

Why not, the earlier the better? Publication of Louis’ results in English (Louis 1836) were

hailed in the Journal of the American Medical Society as “one of the most important medical

works of the present century,” being “the first formal exposition of the results of the only true

method of investigation in regard to the therapeutic value of remedial agents” (Bartlett 1836,

p. 102). Yet Louis’ use of statistical trials to determine effects of bloodletting did not catch on.

Neither did the later, much more conclusive findings of John Hughes Bennett, have significant

effect on practice.12 Bennett found no deaths among 105 patients whom he had treated for

pneumonia without bloodletting at the Edinburgh Royal Infirmary; in contrast, during a prior

period, when bloodletting had been standard treatment, more than one third of the pneumonia

patients had died (Thomas 2014, p. 74). Bloodletting did decline greatly over the course of

12Bennett is most famous for his discovery of leukemia.
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the 19th century, not because of statistical testing, but instead because physicians were buying

into the new theories of causation of disease. The 1909 edition of Sir William Osler’s textbook

on The Principals and Practice of Medicine said that “local bloodletting by cupping or leeches

is certainly advantageous in robust subjects” (Osler 1909, p. 782); such statements remained

in posthumous editions of this influential textbook, as late as its fourteenth edition in 1942

(Thomas 2014, p. 75).

Medical historian John Harley Warner has culled doctors’ letters and reports to explain why

physicians, especially in the United States, were so averse to statistical methods. They viewed

themselves as professionals with the duty of actively treating individual patients; that treatment

would depend upon physicians’ ability at observation, which was learned through their expe-

rience in practice.13 With this identity, it was considered denial of duty to base judgment in

individual cases on statistical samples of unknown patients in different locales and in different

circumstances: “[Doctors] were not prepared to accept even in principle the proposition that

they should discard existing therapeutic beliefs and practices, validated by both tradition and

their own experience on account of somebody else’s numbers” (Warner 1986, p. 201).

Two more recent examples, one from the last half of the 20th century, and another from

the early part of the 21st, illustrate the resistance of doctors to testing current procedures. Ac-

cording to a survey of physicians treating breast-cancer by surgery, in 1968, 86 percent of

surgical treatments for breast cancer were by radical mastectomy (Lerner 2003, p. 132). This

procedure, which had been introduced in the United States in 1892 by Johns Hopkins’ William

Haldane, was highly debilitating to its survivors. Yet matched statistics from the Cleveland

Clinic published in 1961 by Crile (1961) had shown that radical mastectomy yielded no im-

provement in mortality relative to simple mastectomy or lumpectomy, which were much less

invasive (Lerner 2003, p. 117). It took ten more years before a significant-size random control

trial was begun, against fierce opposition from the cancer-surgeon establishment—opposition

that continued even after the trial was in progress (Lerner 2003, p. 138). The breast-cancer

surgeons, like Warner’s 19th century physicians, based their resistance on their belief in the

13Thus Warner (1986) writes: “Through the mid-nineteenth century professional identity was based on proper
behavior and on a medical theory that stressed the principle of specificity, the notion that treatment had to be
matched to the idiosyncratic characteristics of individual patients and their environments” (p. 1). And he adds:
“Extensive knowledge about the basic sciences was desirable, but not essential to proper professional identity.
What was essential was that the physician be able to act, and to do so in accordance with regular values. The
common defining body of learning that all regular practitioners shared was knowledge about practice” (p. 13).
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powers of clinical expertise (Lerner 2003, p. 115). In an extreme expression of that opposition,

the editor of the journal of the American Cancer Association said that use of random control

trial to decide on procedures for individual patients was playing “scientific Russian roulette”

with their lives (Lerner 2003, p. 115). When its results were published in 1981, 20 years after

Crile’s article, the random control trial bore out his initial findings: no difference in mortality,

but great difference in the condition of the survivors (Fisher et al. 1981).

As another example, completion of large-scale tests for hormone-replacement therapy (HRT)

occurred yet later. It had been approved in the United States by the Food and Drug Adminis-

tration in 1942 (Shook 2011, p. 39). The results of the control trials in the United States and

Great Britain were only published after 2000. By that time, 44 percent of US post-menopausal

women were ever-users (National Health and Nutrition Examination Survey 2003). The trials

revealed greatly increased incidence of breast cancer for those taking some forms of HRT.14

In contrast to the physical sciences, in medicine there appears to have been no norm for the

use of high-power tests, making promotion of believers in the old paradigm much more likely.

Indeed, in medicine, results from high-power tests played no role in promotion to the status

of practicing physician. Instead, promotion depended—especially in surgery—on ability to

execute current technique. Thus, for example, trainees in breast-cancer surgery were admitted

as practicing surgeons themselves, based on their ability to carry out radical mastectomies; so

that the test for promotion to elder of the profession had little or no regard for Crile’s findings

of little difference in mortality—but much difference in patient welfare—between radical and

simple mastectomy.

6.6. The Challenges of a Low Youden Index

It may not be the eschewal of high-power tests that leads to convergence to inferior paradigms.

In some fields of investigation, such tests may not exist. This is a major difference between the

physical and the social sciences.15

14Among the findings of Great Britain’s Million Women Health Study: “Use of HRT by women aged 50–64
years in the UK over the past decade has resulted in an estimated 20,000 extra breast cancers, 15,000 associated
with oestrogen-progestagen; the extra deaths cannot yet be reliably estimated” (Million Women Study Collab-
orators 2003, p. 419). Extrapolation of this number to the United States on the basis of population would be
conservative, since HRT was more common in the United States than in Britain.

15In a metastudy of papers published in the social and behavioral sciences between 1960 and 2011, Smaldino
and McElreath (2016) estimate that for a statistical significance of α = 0.05, the average statistical power is
1−β = 0.24 (Figure 1). This leads to a low Youden index of J = 0.24−0.05= 0.19. Moreover, despite presumably
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A little-known example from the history of economics (intentionally chosen to be far from

current debates) illustrates. In the 1880s Uriel Crocker, a prominent Boston lawyer, published

an article in the Quarterly Journal of Economics regarding the possibility of “an excess of

[productive capacity] . . . beyond the amount required to meet all demands that are backed by

the ability and the willingness to pay for the things demanded” (Crocker 1887, p. 362). S.M.

Macvane, a professor at Harvard, wrote a comment to the article and offered the following

conclusion: “Demand for savings is the offer of labor for wages. In order that the supply of

capital shall exceed the demand for it, there must be more capital offering for labor than the

laborers are willing to receive! [exclamation in the original] The mere statement of the case is

sufficient to show its absurdity” (p. 367).

Undaunted, Crocker wrote The Cause of Hard Times, published in 1895. But rather than

becoming known as precursor to Keynes, Crocker’s views led him (and those of the “under-

consumptionists” who followed him) nowhere. His distress is expressed in the last chapter: “in

closing, it may be well to say that no professional economist has ever publicly recognized the

validity of the theories and arguments set forth in this book” (Crocker 1895, p. 103). Among

the economists, who “have published attempted refutations” or who “have privately expressed

to this author their complete dissent from his views” were luminaries of the profession, includ-

ing J. Laurence Laughlin, Thorstein Veblen, William Graham Sumner, and Frank Taussig. The

Great Depression generated a powerful test of the old-paradigm theory that supply creates its

own demand; and, after Keynes’ General Theory, the economics profession no longer dismissed

underconsumptionism as “absurd.”

6.7. Relation to “The Methodology of Positive Economics”

Our model and its findings yield a perspective on the classic essay on economic methodology

by Friedman (1953). Writing before the birth of experimental economics, Friedman saw the

difference between social and physical sciences as one of degree: largely because social sci-

ences lacked the experimental evidence typically available in the physical sciences. But he did

not view this characteristic as preventing false hypotheses from being “weeded-out”: only that

the weeding would be slow (p. 11).

According to our model, when scientists are unbiased, social sciences will indeed converge

better methods and richer data, statistical power has not increased over time.
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to the truth, even if their Youden index is low. But there is also homophily, of which Fried-

man was aware. He cited, as example, differences between sociologists and economists in their

interpretation of evidence regarding the hypothesis of self-serving profit maximization.16 And

following our model, the social sciences, with their low Youden index and with homophily, may

never converge to the truth. Witness the schisms between economics and sociology (indirectly

referenced in Friedman’s example, and also suggested by Fourcade, Ollion, and Algan (2015)),

and, prior to behavioral economics, between economics and psychology. These groups of aca-

demics, with their respective beliefs and paradigms, show the survival of different species. They

have evolved differently: in separate academic flour jars.

Finally, we cannot necessarily infer the validity of a paradigm—as Friedman (1953) asserts—

because of “its continued use and acceptance” (p. 30). On the contrary, in the beetles model

there may be convergence into a sink of continued, near universal, false belief.

6.8. Recent Evidence from Citation Dynamics

Biases in the system for acceptance and rejection of academic journal articles (described in

Zuckerman and Merton (1971)) could also be represented by our promotion-chain model. Ac-

ceptance of papers makes their authors prime candidates to be referees (and also editors) for

later submissions—just as grantees of tenure become the judges of later tenure candidates.

But, because of problems of determining the quality of articles, attributions of bias must be

accompanied by cautionary tales. A creative paper by Wang, Veugelers, and Stephan (2016)

illustrates. They index articles’ novelty by the number of previously unrecorded combinations

of cited journals in the references. They find that “highly novel” articles in the 2001 Web of

Science were published in journals with 18 percent lower Impact Factor than articles deemed

by the index to have “no novelty at all” (p.6). But the authors’ inference that this difference

indicates bias may be overplayed. They do not have a measure of article quality: so that the 18

percent lower impact factor could well result, instead, from differences in the quality of novel

and non-novel articles.
16Friedman said that social scientists are more likely to accept hypotheses that are familiar to them: “The

background of the scientists is not irrelevant to the judgments they reach. There is never certainty in science, and
the weight of evidence for or against a hypothesis can never be assessed completely ’objectively.’ The economist
will be more tolerant than the sociologist in judging conformity of the implications of the hypothesis [of single-
minded pursuit of self-interest by employers] with experience, and he will be persuaded to accept the hypothesis
tentatively by fewer instances of ’conformity’ ” (p. 30).
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Similar caution should be applied to the findings of Siler, Lee, and Bero (2015). They

track the fate of more than a year’s submissions to three leading medical journals—Annals of

Internal Medicine, the British Medical Journal, and the Lancet. They find that among the 1008

submissions in the sample, 808 were ultimately published (p. 360). But all of the 14 most-cited

articles had been rejected from one of the three journals; 12 of them, desk-rejected (p. 362).

However, lacking a measure of quality, this finding is only suggestive of bias. High citation

counts are not necessarily indicative of paradigm shift, or even of “high quality.” Absent a

list of the articles and independent evaluation, we cannot know that the rejections and the high

citations were not the result of unfounded claims.

In this regard, we do have one such list of rejected articles, from Gans and Shepherd (1994).

They asked “leading economists” about their articles that had been rejected for publication. At

least one such article on the list, “Expectations and the Neutrality of Money” by Robert Lucas,

is commonly seen as a paradigm-shifter.

A recent study, by Azoulay, Fons-Rosen, and Graff Zivin (2015), finesses the problem of

article quality by use of a clever instrument. They examine the number of publications in

narrowly-defined fields of the life sciences, after the early death of a “star.” Given the nois-

iness of the dying-star instrument, the results are surprisingly large. Publications of previous

collaborators of the deceased star declined by 20.3 percent; in contrast non-collaborators’ publi-

cations increased by 7.9 percent (p. 16, p. 37). Additionally—yet more indicative of the ingroup

favoritism/outgroup bias central to our model—the 7.9 percent increase did not come mainly

from previous non-collaborators in the field, but instead from new entrants, whose papers were

also highly cited on average (p. 22). In further line with predictions of the egg-eating model,

high “intellectual coherence” of a field (indicated by a high percentage of within-field citations)

acted as a brake on the new entry, just as in our model, a low value of σ deters new-paradigm

adherents. Their data also accords with a prediction of the extended beetles model: new entry

was lower if the deceased star had produced many academic progeny.

Another caution regarding the use of citation studies is also relevant. In our model citations

may be neither predictive of an article’s quality or of its paradigm-shifting potential: since the

model predicts that citations to new paradigm areas will be rare—or even non-existent—if the

new paradigm is not adopted. Underconsumptionism again illustrates. Prior to Keynes’ General

Theory, Crocker’s article in the Quarterly Journal of Economics and his book are not cited even
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once in the Social Science Citation index; to date, their total citation count is only seven.

7. Model of Hierarchical Organizations

This section demonstrates another possible application of egg-eating bias: it adapts the previ-

ous model of science to promotion systems in hierarchical organizations. Just as in the flour

jars, there were two types of beetles, we assume there are two types of employees, which we

respectively label “Red” and “Green”. We assume, without loss of generality, that the attributes

of the Greens make them as productive, or more productive, for the organization than the Reds.

We determine conditions under which the promotion system works well, in the sense that the

more productive type (Green) is increasingly prevalent at higher levels of the organization. We

also determine conditions under which the promotion system fails.

7.1. Assumptions

We assume that the employees’ productivity differs, according to whether they are Red or

Green. We assume that the Greens are as “fit,” or more “fit,” than the Reds. Their level in

the organization, or their mixture with others, does not affect their attributes or behavior.

While the productivity of an employee is partially determined by her attributes, the pro-

duction process within the organization brings additional uncertainty to the productivity of

an employee: tasks are difficult to execute and subject to imponderables; the attributes of a

worker may not be perfectly adapted to all situations; and workers vary in ability, effort, and

resourcefulness. Hence, productivity is noisy; and only partially determined by the employee’s

underlying attributes.

The hierarchical organization has n levels, indexed by i = 1,2, . . . ,n. In level i, there are

G(i) Green employees and R(i) employees. The fraction of Green employees is

σ(i) =
G(i)

G(i)+R(i)
.

The average productivity at level i increases with σ(i).

We define level 0 of the organization as the base population from which the organization

recruits. That population has G(0) > 0 Greens and R(0) > 0 Reds, with G(0) and R(0) large

relative to the size of the organization.
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At any time, new members enter the organization; some existing members are promoted;

and others exit. The organization promotes members from level i to level i+1; new recruitment

is represented as promotion from level 0 to level 1. Members at level i are brought up for

promotion at rate λ (i).17 The sequence {λ (i)}n−1
i=0 is exogenous; it determines the relative size

of the different levels of the organization. A member who is considered for promotion, but is

denied, leaves the organization.18 Other members also leave, for exogenous reasons, at rate δ .

To achieve its goals, the organization aims to promote its most productive members. A

member at level i is evaluated by her supervisor, who is randomly chosen among the members

at level i+ 1. Therefore, the supervisor is a Green with probability σ(i+ 1) and a Red with

probability 1−σ(i+1).

We have seen that productivity is noisy: it is affected by luck, and the competence of the

worker. Hence, not all Green candidates are promoted, and not all Red candidates are denied

promotion. Nevertheless, since the Green attributes are more conducive to productivity, Green

candidates tend to be more productive for the organization than Red candidates. Accordingly,

without egg-eating bias, supervisors would promote a Green with probability 1−α and a Red

with probability β , with 1−α ≥ β .

As in the model of science, we can interpret the promotion test as a statistical test that the

attributes of the candidate are superior. Under this interpretation, α is the probability of Type I

error and β is the probability of Type II error. Hence, the probabilities α and 1−β correspond to

the statistical significance and statistical power of the promotion test if supervisors are unbiased.

Accordingly, the Youden index of the promotion test is J = 1−α−β . When the Youden index

is positive, Greens are more likely to be promoted than Reds.

With egg-eating bias in evaluating a promotion file, the probabilities of promoting Green

and Red candidates are different from 1−α and β . Supervisors are biased in favor of appli-

cants of the same type and against applicants of the opposite type. The bias of a supervisor

is measured by the parameter ε > 0. A Green supervisor denies promotion to a fellow Green

with lowered probability α − ε; a Red supervisor denies promotion to a Green candidate with

increased probability α + ε; a Green supervisor grants promotion to a Red candidate with low-

17Note that λ (n) = 0 since nobody can be promoted above the highest level of the organization.
18We thus assume that the organization follows an up-or-out promotion system. This system is common in law

firms, consulting firms, and academia. It is also practiced in the US military, and codified in the 1980 Defense
Officer Personnel Management Act (Rostker et al. 1993).
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ered probability β − ε; and a Red supervisor grants promotion to a fellow Red with increased

probability β + ε .

When supervisors are biased, promotion probability for an employee at level i depends on

the fraction of Green employees at level i+ 1. We denote by αad j(i) the probability that a

level-i Green employee is dismissed and by β ad j(i) the probability that a level-i Red employee

is promoted. In the absence of bias, αad j(i) = α and β ad j(i) = β . With egg-eating bias, the

probabilities are

α
ad j(i) = σ(i+1)(α− ε)+(1−σ(i+1))(α + ε) = α +(1−2σ(i+1))ε(9)

β
ad j(i) = σ(i+1)(β − ε)+(1−σ(i+1))(β + ε) = β +(1−2σ(i+1))ε.(10)

The probabilities αad j(i) and β ad j(i) are the adjusted statistical significance and statistical

power of the promotion test between level i and level i+1. These probabilities are not constant

but depend on the composition of each level of the organization. The adjusted Youden index at

level i is similar to the adjusted Youden index in our model of science:

Jad j(i) = 1−α
ad j(i)−β

ad j(i) = J+2(2σ(i+1)−1)ε.

7.2. Analysis

We study the steady state of the hierarchical organization. For any level i+ 1 = 1,2, . . . ,n,

inflows into level i+ 1 equal outflows from level i+ 1. Thus the number of Green employees

and of Red employees in levels i and i+1 are related by

(δ +λ (i+1))G(i+1) =
(

1−α
ad j(i)

)
λ (i)G(i)

(δ +λ (i+1))R(i+1) = β
ad j(i)λ (i)R(i).

Combining these equations and using G(i)/R(i) = σ(i)/(1−σ(i)), we obtain

(11)
σ(i+1)

1−σ(i+1)
=

1−αad j(i)
β ad j(i)

· σ(i)
1−σ(i)

,
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where αad j(i) and β ad j(i) are given by (9) and (10). This difference equation, together with the

boundary condition σ(0) = G(0)/(G(0)+R(0)), determines the sequence {σ(i)}n
i=0 represent-

ing the steady-state fraction of Green employees at each level of the organization.

Our models of science and of hierarchy differ in their formalism: with differential equations

in the case of science; with difference equations in the case of hierarchy. But the analysis

is similar in both cases, because in both models the dynamics of σ are driven by the sign of

an adjusted Youden index. We saw it in the case of science, and equation (11) also shows it

in the case of organizations. Indeed, whether σ is increasing or decreasing in i depends on

whether
(
1−αad j(i)

)
/β ad j(i) is greater or smaller than 1, which in turn depends on whether

1−αad j(i) is larger or smaller than β ad j(i). Equivalently, the dynamics of σ depend on whether

1−αad j(i)− β ad j(i) = Jad j(i) is positive or negative. Thus, as with science, the sign of the

adjusted Youden index determines whether or not promotion chains filter out false belief.

Thus the propositions regarding hierarchy are nearly identical to those regarding science:

PROPOSITION 3. Without egg-eating bias (ε = 0) there are two possible regimes. When the

Youden index is zero (J = 0), each hierarchical level has the same composition, equal to the

composition of the population (σ(i) = σ(0) for all i). In particular, the composition of the top

hierarchical level reflects the composition of the population. When the Youden index is positive

(J > 0), the fraction of Greens increases up the promotion ladder ({σ(i)}n
i=0 is an increasing

sequence), and the fraction of Greens at the top hierarchical level converges to 1 as the number

of levels becomes infinite (limn→∞ σ(n) = 1).

PROPOSITION 4. With egg-eating bias (ε > 0), there are two possible regimes, depending

on the amount of bias relative to the Youden index (J). When ε ≤ J/2, the fraction of Greens

increases up the promotion ladder ({σ(i)}n
i=0 is an increasing sequence), and the fraction of

Greens at the top hierarchical level converges to 1 as the number of levels becomes infinite

(limn→∞ σ(n) = 1), irrespective of the fraction of Greens in the population (σ(0)). But when

ε > J/2, the dynamics are determined by the value of the fraction of Greens in the population

relative to the threshold σ∗ given by (4). If σ(0)> σ∗, the fraction of Greens increases up the

promotion ladder ({σ(i)}n
i=0 is an increasing sequence), and the fraction of Greens at the top

level converges to 1 as the number of levels becomes infinite (limn→∞ σ(n) = 1). If σ(0)< σ∗,

the fraction of Reds increases up the promotion ladder ({σ(i)}n
i=0 is a decreasing sequence),

and the fraction of Reds at the top level converges to 1 as the number of levels becomes infinite
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(limn→∞ σ(n) = 0).

7.3. Discussion

Because of their greater average productivity, in the absence of bias, Green employees are

more likely to be promoted than Red employees. However, if egg-eating bias is sufficiently

strong, the organization can be captured by Red employees: this means that there is increasing

concentration of Red employees at ever-higher levels of the promotion ladder. And, as the

number of levels in the organization grows large, the fraction of Red employees at the top levels

may approach one.

Corporate Culture. Our model of promotion in organizations is related to a literature on

corporate culture. This literature views corporate culture as the similar beliefs and values of the

stakeholders—especially the employees—of a corporation.19 In our model, promotions from

one rung of an organization to the next results in increased specialization at each higher rung of

the ladder. In this way, our model gives a description of a special mechanism for the evolution

of similar beliefs and values in organizations—especially at higher rungs.

Also, if the promotions to the next higher rung are made only with considerations regarding

the candidate’s specific fitness for the job, there is an externality of some potential importance.

The role of the promotees in future promotions is typically not factored into the decision re-

garding advancement from rung i to rung i+1. In a promotion chain, when the promotees are

biased, their advancement will affect the composition and quality of future promotions.

One additional effect does not enter our model explicitly but could be easily added. It could

also matter a great deal. Promotions at each individual level usually fail to take into account

choices between Greens and Reds at all higher levels; thus they usually also fail to take into

account the overall mix of Greens and Reds in the organization as a whole. On the one hand,

specialization either toward Green or toward Red may have the positive externality of making

cooperation easier. On the other hand, such specialization can have the negative externality of

siloed thinking that is unreceptive to new ideas (Tett 2015). In the presence of this negative

externality, the egg-eating bias is particularly problematic, since it leads to overspecialization.

19See Hermalin (2012) for a review of the literature.
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Dysfunction at the Top of Organizations. A vast literature documents dysfunction at the

top of organizations: mostly in biographies of individual leaders. Our model gives a view,

complementary to this literature, regarding the rise of dysfunctional cream: it’s the outcome of

an equilibrium.

In a special important case of difference between Reds and Greens, the Reds are those lack-

ing normal moral scruples. With egg-eating bias, this personal attribute may play an increasing

role in promotion as the unscrupulous rise to the top: if the judges for promotion have similar

morals themselves, and have biases in favor of the like-minded. As one extreme application,

consider the leaders of Communist states. The Leninist lack of respect for individual rights,

and especially for truthfulness in accusations, advantaged “Reds” willing to use any method to

get ahead (Akerlof and Snower 2016). The unusual cruelty and unusual skill at eating other’s

eggs of Stalin, Mao, Ceausescu, Hoxha, Honecker, Pol Pot, and many other Communist leaders

cannot result from random draws from the populations of their respective countries.

The tug of war between self-promotion and merit that occurred in extreme form under Com-

munism also occurs— much, much damped—in other forms of organization. Farrell (2010)

offers one illustration in some detail. He attributes the fall of Merrill Lynch in the 2008 crash to

the promotion of Stanley O’Neal as CEO. Farrell says that O’Neal “had not been content to let

merit alone determine his success,” being helped by a “cabal” of supporters who “advanc[ed]

his candidacy [to CEO] in any way possible” (p. 90).20 O’Neal’s ineptitude in finance led him,

against contrary advice, to appoint Osman Semerci, a charismatic former rug-dealer from Istan-

bul, as head of the Fixed Income Department. That was perhaps a yet worse choice of personal

salesmanship over competence than the earlier pick of O’Neal by his Board of Directors; in

short order, Semerci exposed Merrill to $31 billions of collateralized debt obligations, just be-

fore the market went sour in 2007–2008 (p. 18). Merrill Lynch missed bankruptcy only through

a last-minute sellout to Bank of America. Our model shows that such ineptitude at the top is an

equilibrium occurrence in systems in which eating of each other’s eggs is allowed to privilege

those with special skills at achieving their own promotion.

Gender Inequality. As another application, the model also adds to other explanations why

organizations are so predominantly male and white at the top. There is much evidence of ho-

20In that position, O’Neal won 18th place in a CNBC list of the 20 worst American CEOs of all time. See
http://www.cnbc.com/2009/04/30/Portfolios-Worst-American-CEOs-of-All-Time.html.
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mophilic bias regarding gender (for example, Ibarra 1992; Reskin and McBrier 2000) and eth-

nicity (for example, Bertrand and Mullainathan 2004; Oreopoulos 2011). Following our model,

even with a diverse labor force and even drawing from labor pools of equal competence, orga-

nizations may not be diverse at the top. This accords with findings by Kanter (1993): gender

polarization is prevalent in high management positions (p. 16). As predicted by our model,

there are decreasing fractions of women up the promotion ladder—from first-level management

to middle management to top management (p. 17). Homogeneity by managerial ethnicity is

also common, and also explained by our model. To give just one example, the executives in the

company studied by Kanter were largely Scotch-Irish (p. 54).

8. Conclusion

This paper gives a new model regarding the emergence (or non-emergence) of scientific truth.

Contrary to the belief that truth will always emerge, the model shows specific conditions in

which, on the contrary, old paradigms will prevail even when they are in contest with new,

better ones. In particular, if there are powerful scientific tests for new versus old paradigms,

and the outcome of those tests play a major role in the determination of admittance into the

next generation of scientists, then a new paradigm that is superior will prevail against the old.

But, if the scientific tests either lack power, or are little used in determining admittance into the

next generation of scientists, then egg-eating bias (in favor of those who think like ourselves)

increases the chances of getting stuck in an old and inferior paradigm. Such bias may not just

slow scientific progress; it may bring it to a halt.

Our model also suggests why science has made significant progress: not only because of

new scientific tests of high power, but also because of commitment of established scientists to

admit into their ranks those whose work respects the findings of such tests.

Furthermore, the principles we find regarding science also apply to promotions in hierarchi-

cal institutions with advancements up a promotion ladder. As with science, promotions biased

to resemble those in higher rungs, can filter employees with lower productivity up the promo-

tion ladder—with the highest concentration of such workers at the very top. This possibility

gives reason why promotions in organizations, as in science, should be occasions to stop, look,

and listen to divergent views.

Finally, more generally, irrespective of distinction between “better” or “worse” paradigms,
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egg-eating bias results in convergence in belief to one paradigm or another. Thus, any benefit

coming from diversity of belief (nonspecialization) cannot be realized in steady state.
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Appendix A. Proofs

Proof of Proposition 1

When J = 0, equation (6) implies σ̇(t) = 0 so σ(t) is constant over time. When J > 0, equa-

tion (6) can be written σ̇(t) = P(σ(t)) where P(σ) = σ(1−σ)Jλ . The polynomial P has two

roots, 0 and 1, and P(σ) > 0 for all σ ∈ (0,1). Hence the differential equation (6) has two

critical points: σ = 0, which is a source, and σ = 1, which is a sink. For any initial condition

σ(0) ∈ (0,1), σ(t) therefore converges toward 1.

Proof of Proposition 2

We define the polynomial P by

P(σ) = 2σ(1−σ)

[
2σε +

j
2
− ε

]
λ .

Equation (7) can be written as σ̇(t) = P(σ(t)). The dynamic behavior of σ(t) is determined

by the properties of P. The properties of the polynomial P depend on J and ε . If ε > 0, the

polynomial P has three roots: 0, 1, and the σ∗ given by (4).

The root σ∗ has the following properties:

• σ∗ < 1

• σ∗ > 0 if ε > J/2

• σ∗ = 0 if ε = J/2

• σ∗ < 0 if ε < J/2

Since 0, 1, and σ∗ are roots of the polynomial P, they are critical points of the differential

equation (7). In addition, for any σ ∈ (0,1), if σ >σ∗, then P(σ)> 0; if σ <σ∗, then P(σ)< 0.

Thus there are three possibilities:

• When σ∗< 0, 0 is a source while 1 is a sink so σ(t) converges to 1 from any σ(0)∈ (0,1).

• When σ∗ ∈ (0,1), 0 is a sink, σ∗ is a source, and 1 is a sink. Thus σ(t) converges to 1

from any σ(0) ∈ (σ∗,1) and converges to 0 from any σ(0) ∈ (0,σ∗).
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• When σ∗ = 0, 1 is a sink and 0 is a node so σ(t) converges to 1 from any σ(0) ∈ (0,1).

Proposition 2 directly follows from these properties.

Proof of Propositions 3 and 4

We implicitly define a mapping P : [0,1]→ [0,1] by writing equation (11) as σ(i+1) =P(σ(i)).

The mapping T : x 7→ x/(1− x) is a strictly increasing one-to-one mapping from (0,1) to

(0,+∞). It is invertible and its inverse T−1 is a strictly increasing one-to-one mapping from

(0,+∞) to (0,1). If ε > 0, the mapping

Z : x 7→ 1−α +(2x−1)ε
β − (2x−1)ε

.

is a strictly increasing one-to-one mapping from (0,1) to ((1−α− ε)/(β + ε),(1−α + ε)/(β − ε)).

We have assumed that ε < β to ensure that β −ε > 0; hence the denominator of Z(x) is strictly

positive on [0,1]. The mapping P can be expressed as P = T−1 ◦ (Z×T ). As a consequence, P

is a strictly increasing one-to-one mapping from (0,1) to (0,1).

The mapping P has the following properties:

• If ε = 0 and J = 0, P(σ) = σ for all σ ∈ [0,1].

• If ε = 0 and J > 0, the mapping P has two fixed points: 0 and 1. Furthermore, for all

σ ∈ (0,1), P(σ)> σ .

• If ε > 0, the mapping P has three fixed points: 0, 1, and the σ∗ defined by (4). (We

have described the properties of σ∗ in the proof of Proposition 2.) For any σ ∈ (0,1),

P(σ)< σ if σ < σ∗ and P(σ)> σ if σ > σ∗.

Propositions 3 and 4 directly follow from these properties.

Appendix B. Extensions of the Model of Science

We formally analyze the three extensions of the model of science discussed in Section 5.3.
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Heterogeneous Egg-Eating Biases

With heterogeneous egg-eating bias, a New evaluator denies tenure to a New scientist with

lowered probability α − εN ; an Old evaluator denies tenure to a New scientist with increased

probability α + εO; a New evaluator grants tenure to an Old scientist with lowered probability

β − εN ; and an Old evaluator grants tenure to Old scientist with increased probability β + εO.

The biases εN and εO are bounded such that these four probabilities remain in (0,1). Hence,

the actual probability of denying tenure to New scientists is

α
ad j(σ) = σ(α− ε

N)+(1−σ)(α + ε
O) = α−σε

N− (σ −1)εO.

Similarly, the actual probability of granting tenure to Old scientists is

β
ad j(σ) = σ(β − ε

N)+(1−σ)(β + ε
O) = β −σε

N− (σ −1)εO.

Given these tenure probabilities, the adjusted Youden index is

Jad j(σ) = 1−α
ad j(σ)−β

ad j(σ) = J+2σε
N +2(σ −1)ε0.

The adjusted Youden index is linearly increasing in σ , takes its lowest value of J−2ε0 at σ = 0,

and takes its highest value of J+2εN at σ = 1.

If εO ≤ J/2, the adjusted Youden index is positive for all σ ∈ (0,1). But if εO > J/2, the

index changes sign on (0,1). We define the threshold

(A1) σ
∗ =

εO− J/2
εN + εO .

If εO > J/2, then σ∗ ∈ (0,1). Furthermore, the adjusted Youden index is negative for σ < σ∗,

zero at σ = σ∗, and positive for σ > σ∗.

As when the biases εN and εO are the same, the evolution of σ(t) is given the differential

equation (8). Since the evolution of σ(t) is given by the same differential equation as when the

egg-eating biases are the same, and since the adjusted Youden index has the same properties,

we immediately obtain a proposition similar to Proposition 2:

PROPOSITION A1. With egg-eating bias (εN > 0 and εO > 0), there are two possible regimes,
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depending on the amount of bias of Old scientists (εO) relative to the Youden index (J). When

εO ≤ J/2, the New paradigm eventually prevails (limt→∞ σ(t) = 1), irrespective of the initial

fraction of New tenured scientists (σ(0)). But when εO > J/2, the eventual outcome is deter-

mined by the initial value of the fraction of New tenured scientists relative to the threshold σ∗

given by (A1). If σ(0) > σ∗, the New paradigm prevails (limt→∞ σ(t) = 1); but if σ(0) < σ∗,

the Old paradigm prevails (limt→∞ σ(t) = 0).

Last, we can recompute the increase in Youden index required to start a scientific revolution.

Assume that the share of New scientists is σ and is converging to 0. To initiate a scientific

revolution, we need the share of New scientists to start converging to 1. This requires that the

Youden index J increases sufficiently to be above the threshold

J∗ = 2
[
ε

O−σ

(
ε

O + ε
N
)]

.

When the regular Youden index J is above the threshold J∗, the adjusted Youden index at σ is

positive and science starts converging to the truth.

Heterogeneous Productivity

With heterogeneous productivity the growth rates gN and gO of tenured New scientists and

tenured Old scientists are given by

gN(σ) =
(

1−α
ad j(σ)

)
λ

N−δ

gO(σ) = β
ad j(σ)λ O−δ .

These equations give us

gN(σ)−gO(σ) = λ
NJad j(σ),

where Jad j(σ) is a new adjusted Youden index, tailored to the situation with heterogeneous

productivity:

Jad j(σ)≡ 1−α
ad j(σ)− λ O

λ N β
ad j(σ) = J+

(
1+

λ O

λ N

)
(2σ −1)ε.
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In the definition of the adjusted Youden index, the unadjusted Youden index J is also redefined

to account for heterogeneous productivity:

J ≡ 1−α− λ O

λ N β .

With homogeneous productivity, the Youden index was J = 1−α −β . It was necessarily

positive because 1−α > β , as the New paradigm is superior to the Old one. With heterogeneous

productivity, although 1−α > β , it is possible that the Youden index J = 1−α − (λ O/λ N)β

is negative. In fact this happens when the productivity of Old scientists is large enough relative

to that of New scientists. Formally, the Youden index J is negative as soon as the ratio λ O/λ N

is larger than the threshold λ ∗ given by

λ
∗ =

1−α

β
.

Proposition 1 must be adjusted accordingly:

PROPOSITION A2. Without egg-eating bias (ε = 0), there are three possible regimes, de-

pending on the productivity of Old scientists (λ O) relative to the productivity of New scientists

(λ N). When λ O/λ N > λ ∗, the Youden index is negative (J < 0), so the Old paradigm eventu-

ally prevails (limt→∞ σ(t) = 0). When λ O/λ N = λ ∗, the Youden index is zero (J = 0), so the

composition of the population of scientists is constant over time (σ(t) = σ(0) for all t). When

λ O/λ N < λ ∗, the Youden index is positive (J > 0), so the New paradigm eventually prevails

(limt→∞ σ(t) = 1).

We now return to the case with bias. The adjusted Youden index is linearly increasing in

σ , takes its lowest value of J− (1+λ O/λ N)ε at σ = 0, and takes its highest value of J +(1+

λ O/λ N)ε at σ = 1.

If ε ≤ |J|/(1+λ O/λ N) and J > 0, the adjusted Youden index is positive for all σ ∈ (0,1).

If ε ≤ |J|/(1+λ O/λ N) and J < 0, the adjusted Youden index is negative for all σ ∈ (0,1). But

if ε > |J|/(1+λ O/λ N), the index changes sign on (0,1). We define the threshold

(A2) σ
∗ =

1
2

(
1− J

(1+λ O/λ N)ε

)
.

If ε > |J|/(1+λ O/λ N), then σ∗ ∈ (0,1). Furthermore, the adjusted Youden index is negative
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for σ < σ∗, zero at σ = σ∗, and positive for σ > σ∗.

Once the new definition of the adjusted Youden index is factored in, the dynamics of σ(t)

remain given by the differential equation (8). Since the evolution of σ(t) is given by the same

differential equation as when the productivities are the same, and since the adjusted Youden

index has similar properties, we immediately obtain a proposition similar to Proposition 2:

PROPOSITION A3. With egg-eating bias (ε > 0), there are three possible regimes, depending

on the amount of bias relative to the Youden index (J). When ε ≤ |J|/(1+λ O/λ N) and J > 0, the

New paradigm eventually prevails (limt→∞ σ(t) = 1), irrespective of the initial fraction of New

tenured scientists (σ(0)). When ε ≤ |J|/(1+λ O/λ N) and J < 0, the Old paradigm eventually

prevails (limt→∞ σ(t) = 0), irrespective of the initial fraction of New tenured scientists (σ(0)).

But when ε > |J|/(1+λ O/λ N), the eventual outcome is determined by the initial value of the

fraction of New tenured scientists relative to the threshold σ∗ given by (A2). If σ(0) > σ∗,

the New paradigm prevails (limt→∞ σ(t) = 1); but if σ(0) < σ∗, the Old paradigm prevails

(limt→∞ σ(t) = 0).

Last, we can recompute the increase in Youden index required to start a scientific revolution.

Assume that the share of New scientists is σ and is converging to 0. To initiate a scientific

revolution, we need the share of New scientists to start converging to 1. This requires that the

Youden index J increases sufficiently to be above the threshold

J∗ =
(

1+
λ O

λ N

)
(1−2σ)ε.

When the regular Youden index J is above the threshold J∗, the adjusted Youden index at σ is

positive and science starts converging to the truth.

Defections

We begin by describing the evolution of the population of scientists without egg-eating bias (ε =

0). Because there are defections at rate µ > 0, the numbers of tenured scientists who believe in
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the New and in the Old paradigm evolve according to the following differential equations:

Ṅ(t) =−δN(t)+(1−α)(λN(t)+µO(t))

Ȯ(t) =−δO(t)+β (λO(t)+µN(t)) .

The terms µO(t) and µN(t) measure the advisees who defect from Old to New and from New

to Old. These equations imply that the growth rates of N(t) and O(t) are given by

gN(σ) =−δ +(1−α)λ +(1−α)µ
1−σ

σ

gO(σ) =−δ +βλ +β µ
σ

1−σ
.

To obtain these equations we used O/N = (1−σ)/σ . We know that

σ̇(t) = σ(t)(1−σ(t))
(

gN(σ(t))−gO(σ(t))
)
.

Combining these equations, we obtain the following differential equation:

(A3) σ̇(t) = σ(t)(1−σ(t))Jλ +µ
[
(1−α)(1−σ(t))2−βσ(t)2] ,

where J = 1−α−β is the Youden index. The first term on the right-hand side is the same as

in the model without defection. The second term is new: it appears because of the defections.

The following propositions describes the dynamics of the population of tenured scientists:

PROPOSITION A4. With defections (µ > 0), no egg-eating bias (ε = 0), and zero Youden

index (J = 0), the tenured scientists are eventually evenly split between the New and the Old

paradigm (limt→∞ σ(t) = 1/2).

PROPOSITION A5. With defections (µ > 0), no egg-eating bias (ε = 0), but positive Youden

index (J > 0), the New tenured scientists are eventually in a majority (limt→∞ σ(t) = σ∗ where

σ∗ > 1/2).

Proof. The differential equation (A3) can be written σ̇(t) = P(σ(t)) where

P(σ) = σ(1−σ)Jλ +µ
[
(1−α)(1−σ)2−βσ

2] .
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The coefficient on σ2 is−J(λ−µ). So the polynomial P is of degree 2 with P(+∞)=P(−∞)=

−∞ if J > 0 and λ > µ , and it is of degree 1 if J = 0 or λ = µ . Furthermore,

P(0) = µ(1−α)> 0, P(1/2) =
1
4

J(λ +µ)≥ 0, and P(1) =−β µ < 0.

We infer that if J = 0, P has a unique root σ∗= 1/2 and P(σ)> 0 for σ < 1/2 and P(σ)< 0

for σ > 1/2. Thus, 1/2 is the unique critical point of the differential equation (A3) on [0,1], and

this critical point is a sink.

If J > 0 but λ = µ , P has a unique root

σ
∗ =

1−α

1−α +β
∈ (1/2,1)

and P(σ)> 0 for σ < σ∗ and P(σ)< 0 for σ > σ∗. Thus, σ∗ ∈ (1/2,1) is the unique critical

point of the differential equation (A3) on [0,1], and this critical point is a sink.

Finally, if J > 0 and λ > µ , P has a unique positive root, σ∗, and this root is in (1/2,1). We

know this because P is of degree 2, the coefficient on σ2 in P is negative, P(0) is positive, and

P(1/2) is positive. The root σ∗ is a complicated expression of the parameters:

σ
∗ =

1
2

λJ−2µ(1−α)

(λ −µ)J
+

√[
λJ−2µ(1−α)

(λ −µ)J

]2

− 4µ(1−a)
(λ −µ)J


and P(σ)> 0 for σ < σ∗ and P(σ)< 0 for σ > σ∗. Hence, σ∗ ∈ (1/2,1) is the unique critical

point of the differential equation (A3) on [0,1], and this critical point is a sink.

We now describe the evolution of the population of scientists with egg-eating bias (ε > 0).

The population dynamics become more complex. Using the same logic as above, we find that

the fraction σ of tenured scientists who believe in the New paradigm satisfies

(A4)

σ̇(t) = λσ(t)(1−σ(t))Jad j(σ(t))+µ

[
(1−α

ad j(σ(t)))(1−σ(t))2−β
ad j(σ(t))σ(t)2

]
,

where the adjusted Youden index Jad j(σ) is given by (3), the adjusted statistical significance

αad j(σ) is given by (1), and the adjusted statistical power β ad j(σ) is given by (2).

We first study the case in which the Youden index is zero:
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PROPOSITION A6. With defections (µ > 0), egg-eating bias (ε > 0), and zero Youden index

(J = 0), there are two possible regimes, depending on the value of defection rate relative to the

threshold

(A5) µ
∗ =

λε

2β − ε
.

If µ ≥ µ∗, the tenured scientists are eventually evenly split between the New and the Old

paradigm (limt→∞ σ(t) = 1/2), irrespective of the initial value of the fraction of New tenured

scientists (σ(0)). If µ < µ∗, the eventual outcome is determined by the initial fraction of New

tenured scientists. If σ(0)< 1/2, Old tenured scientists are eventually a majority (limt→∞ σ(t)=

σ∗ where σ∗ < 1/2). If σ(0) > 1/2, New scientists are eventually a majority (limt→∞ σ(t) =

1−σ∗ where 1−σ∗ > 1/2).

Proof. We define the polynomial P by

P(σ) = σ(1−σ)(1−α
ad j(σ)−β

ad j(σ))λ +µ

[
(1−α

ad j(σ))(1−σ)2−β
ad j(σ)σ2

]
.

Equation (A4) can be written as σ̇(t) = P(σ(t)). The behavior of σ is determined by the

properties of P. Since αad j(σ) and β ad j(σ) are linear in σ when ε > 0, P is of degree 3 or less.

We study the case with J = 0 and ε > 0. Note that in this case

1−α
ad j(1−σ) = 1−α− ε +2(1−σ)ε = β + ε−2σε = β

ad j(σ).

This result implies that P(1−σ) = −P(σ) and thus that P(1/2) = 0. Thus, 1/2 is a root of P.

In addition,

P(0) = µ(1−α− ε)> 0, and P(1) =−µ(β − ε) =−µ(1−α− ε)< 0.

From this we infer that either 1/2 is the unique root of P on [0,1] and P(σ)> 0 for all σ < 1/2

and P(σ) < 0 for all σ < 1/2 (in that case P′(1/2) < 0). Or P has 3 roots on [0,1]: 1/2, σ∗,

and 1−σ∗. In that case P(σ) > 0 for σ ∈ [0,σ∗), P(σ) < 0 for σ ∈ (σ∗,1/2), P(σ) > 0 for

σ ∈ (1/2,1−σ∗), and P(σ) < 0 for σ ∈ (1−σ∗,1] (also in that case P′(1/2) > 0). Hence if

P′(1/2) < 0, then 1/2 is the unique critical point of equation (A4) on [0,1], and it is a sink.
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Or if P′(1/2) > 0, then 1/2 is a source of equation (A4), with two sinks (σ∗ ∈ (0,1/2) and

1−σ∗ ∈ (1/2,1)) at equal distance on each side.

We compute P′(1/2) to characterize the two different regimes. After some algebra find that

P′(1/2) = ε(λ +µ)−2µβ .

Hence, P′(1/2)> 0 if and only if µ < µ∗, where µ∗ is given by (A5). Thus, if µ > µ∗, then 1/2

is a sink. And if µ < µ∗, then 1/2 is a source. Notice that as ε gets larger, 1/2 is more likely to

be source.

When 1/2 is a source, there are two sinks on each side of 1/2, at the same distance from 1/2:

σ∗ and 1−σ∗. It is easy to compute these two other critical points. When 1/2 is a source, P has

3 roots: 1/2, σ∗, and 1−σ∗. It can therefore be written

P(σ) =−4ε(λ −µ)(σ −1/2)(σ −σ
∗)(σ − (1−σ

∗)).

The term of degree 0 in P is 2ε(λ − µ)σ∗(1−σ∗). Using the other expression for P, we see

that the term of degree 0 can also be written µ(β − ε). We infer that

σ
∗(1−σ

∗) =
1
2
· µ

λ −µ
· β − ε

ε
≡ θ .

We verify that for µ < λε/(2β − ε), it is indeed the case that θ ∈ (0,1/4). We infer that the

critical point σ∗ is given by

σ
∗ =

1−
√

1−4θ

2
.

When µ > 0, then σ∗ > 0 and 1−σ∗ < 1 and the two sinks are interior.

We now study the case in which the Youden index is positive:

PROPOSITION A7. With defections (µ > 0), egg-eating bias (ε > 0), and positive Youden

index (J > 0), there are two possible regimes, depending on the value of defection rate relative

to the threshold µ∗ given by (A5), and depending on the value of the Youden index. With either

µ ≥ µ∗, or µ < µ∗ and J large enough, New scientists are eventually a majority (limt→∞ σ(t) =

σ∗ where σ∗ > 1/2). With µ < µ∗ and J small enough, the eventual outcome is determined

by the initial fraction of New tenured scientists (σ(0)). There is some σ† < 1/2 such that if
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σ(0)< σ†, Old scientists are eventually a majority (limt→∞ σ(t) = σ? where σ? < 1/2), and if

σ(0)> σ†, New scientists are eventually a majority (limt→∞ σ(t) = σ∗ where σ∗ > 1/2).

Proof. We define the polynomial P by

P(σ) = σ(1−σ)(1−α
ad j(σ)−β

ad j(σ))λ +µ

[
(1−α

ad j(σ))(1−σ)2−β
ad j(σ)σ2

]
.

Equation (A4) can be written as σ̇(t) = P(σ(t)). Note that P(0) = µ(1− α − ε) > 0 and

P(1) =−µ(β − ε)< 0.

Next, we define

Â(σ) = 1−β + ε−2σε

P̂(σ) = σ(1−σ)(1− Â(σ)−β
ad j(σ))λ +µ

[
(1− Â(σ))(1−σ)2−β

ad j(σ)σ2
]
.

Since α = 1−β − J, αad j(σ) = Â(σ)− J and P(σ) = P̂(σ)+Q(σ), where

Q(σ) = J(1−σ) [σλ +(1−σ)µ] .

For given β , µ , and ε , the polynomial P̂ is the polynomial studied in Proposition A6. So all the

properties of P̂ are known.

The difference between the polynomials P and P̂ is the polynomial Q. The polynomial Q

is simple to analyze because it is only of degree 2 (whereas P and P̂ are of degree 3). The

polynomial Q has the following properties: Q = 0 when J = 0, Q(σ)> 0 on (0,1) when J > 0,

Q(1) = 0, Q(0) = Jµ , Q(σ) is maximized at (λ − 2µ)/(2λ − 2µ) ≤ 1/2, and the maximum

value of Q on (0,1) is Q∗ = Jλ 2/ [4(λ −µ)].

When µ ≥ µ∗, we know that P̂(σ) is decreasing on (0,1) and is 0 at 1/2. Furthermore,

Q(σ) ≥ 0 for σ ∈ [0,1/2]. Since Q(σ) > 0 and P̂(σ) ≥ 0, then P(σ) > 0 for σ ∈ [0,1/2].

Since P̂ and Q are decreasing on [1/2,1] and P(1/2)> 0 and P(1)< 0, P has a unique root σ∗

on (1/2,1). Overall, P has a unique root σ∗ on (0,1) and P(σ)> 0 for all σ < σ∗ and P(σ)< 0

for all σ > σ∗.

When µ < µ∗, we know that P̂(σ) has three roots on (0,1): 1/2, one root on (0,1/2), and

one root on (1/2,1). The value of Q is bounded by Q∗ = Jλ 2/ [4(λ −µ)]. So for J small

enough, we can be sure that there remains two roots of P on (0,1/2). P(1/2) = (λ +µ)J/4 > 0
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while P(1)< 0 so P has at least one root on (1/2,1). Since P cannot have more than 3 roots, P

has exactly one root on (1/2,1).

If J is large enough, it is possible to eliminate the two roots on (0,1/2). The root on (1/2,1)

always remains. This root is unique for the following reasons. The polynomial P̂ has a local

maximum at σ̂ > 1/2. The polynomial P̂ is decreasing on (σ̂ ,1). The polynomial Q is also

decreasing on (σ̂ ,1) (in fact it is decreasing on (1/2,1)). Hence the polynomial P is decreasing

on (σ̂ ,1). So there cannot be more than one root on (σ̂ ,1). Furthermore, there cannot be any

root on (1/2, σ̂) since both Q and P̂ are positive.

Appendix C. The Population Ecology of Flour Beetles

In this appendix we review research on the population ecology of flour beetles. We discuss em-

pirical findings about interspecific competition and cannibalism obtained in laboratory experi-

ments, as well as mathematical models formalizing these findings. We highlight the similarities

between the beetle models and our model of science.

Interspecific Competition

Beetles reproduce quickly and can live anywhere, so they are ideal to study population dynamics

in laboratory experiments. Starting with an experiment by Chapman (1928), flour beetles of

the genus Tribolium have been used in many controlled laboratory experiment to explore the

determinants of population dynamics.

The first experiment about competition between species of flour beetles was conducted at the

Hull Zoological Laboratory of the University of Chicago by Park (1948). In this first experiment

and the other experiments that we discuss here, the two species of flour beetles in competition

were the red flour beetles (Tribolium Castaneum) and the confused flour beetles (Tribolium

Confusum). The two beetles are showed in Figure 1. Park (1962) provides an overview of

laboratory research on competition between species of flour beetles.

Experiments by Park (1954) lead to a first key finding: in interspecific competition, one

species of flour beetles always survives and the other becomes extinct (Neyman, Park, and

Scott 1956, p. 55). Given that species of beetles survive forever in isolation, it was expected

that beetles in competition could cohabit; but this does not happen (Park 1962, p. 1373).
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These experiments reveal another striking fact: in some conditions the same species always

survives; in other conditions the surviving species is random; but in either case the surviving

species is not necessarily the species that does better in isolation (Neyman, Park, and Scott 1956,

Table 1). In all but treatment 6, one species does much better in isolation, but this species is not

the survivor in all the experiments. More surprising, in treatment 5, one species does much bet-

ter in isolation, but this species is not even the survivor in the majority of experiments. Equally

surprising, in treatment 1, the two species do equally well in isolation, but in competition one

of the two species systematically disappears.

These empirical findings were confirmed, and refined, in several subsequent experiments

(for example, Park, Leslie, and Mertz 1964). In particular, Leslie, Park, and Mertz (1968)

established that initial conditions are an important determinant of the final outcome of com-

petition. The study systematically varied the initial numbers of beetles from the two species

to document how these conditions affected final outcomes. They find that indeed, a species

starting with a relatively large number of beetles has a higher chance of survival (Table 3).

Cannibalism

Early on, entomologists realized that cannibalism of eggs and pupae by adult flour beetles was

widespread (Chapman 1928; Park 1934). Figure A1 illustrates an adult beetle eating an egg.

Many studies confirmed and refined this finding (Costantino and Desharnais 1991, p. 5). Fur-

thermore, the entomologists who observed cannibalism were convinced that it was a key deter-

minant of the population dynamics of flour beetles (Costantino and Desharnais 1991, pp. 5–6,

pp. 13–15).

Some species of beetles are more voracious than others: they tend to eat more eggs (and

pupae). But entomologists initially believed that cannibalism was indiscriminate: they thought

that adult beetles could not distinguish between eggs of different species and therefore would

have the same propensity to eat eggs from any species. That is, they believed that beetles were

not biased against different species (Birch, Park, and Frank 1951, p. 131).

Upon further inspection, however, they realized that not only cannibalism was discriminate,

but adult beetles were biased against the eggs (and the pupae) of other species. This means

that all adult beetles eat more eggs from other species than from their own. Evidence of such

egg-eating bias is provided by Park et al. (1965, Table 6), Park, Mertz, and Nathanson (1968,
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 bolium females was increased by repeated
 copulations. Copulation seems to be a
 frequently practiced behavior among Tri-
 bolium as both statistical and observational
 data show. There do not seem to exist,
 however, any particularly elaborate or

 unvarying behavior reactions associated
 with the process. Males can occasionally
 be observed to attempt to mount other
 males. This suggests that sex recognition
 is not highly developed among these forms.
 The pre-copulation behavior varies greatly

 both as to its extent and nature. Often a
 male may follow a female and, attempting
 to mount her with no success, eventually
 cease his activities. Again the two sexes
 may meet and copulate without any visible
 preliminaries at all. In mounting the fe-

 male the male beetle clasps her with all
 three pairs of legs extending them around

 the ventral surface of her body. The male
 lies somewhat posteriorly on the dorsal sur-
 face of the female so that his head coin-
 cides with the thorax of the female. This

 FIG. 4. DRAWING SHOWING AN ADULT TRIBOLIUM EATING ONx OF ITS OWN EGGS (from life)

This content downloaded from 128.148.254.57 on Sun, 02 Apr 2017 13:40:26 UTC
All use subject to http://about.jstor.org/terms

Figure A1: Adult Flour Beetle Eating an Egg (Park 1934, Figure 4)

Figure 1, Table 9), and Ryan, Park, and Mertz (1970, Table 1). How adult beetles can recognize

eggs from different species remains unclear (Costantino and Desharnais 1991, p. 201).

Models of Interspecific Competition

As the first experimental observations of flour beetles became available, mathematical models

were developed to explain these observations. Costantino and Desharnais (1991, pp. 2–20)

provide an historical overview of these models.

After Park (1954) conducted his competition experiments, several questions arose: why

two species of flour beetles could not coexist, why the outcome of competition was sometimes

random and affected by initial conditions, and why the species that did better in isolation did

not always survive.

The initial models of competition assumed that cannibalism was indiscriminate (for exam-

ple, Landahl 1955; Neyman, Park, and Scott 1956). In these models, there is a unique stable

steady state, and it has only one species, which means that the same species always prevails.

Furthermore, cannibalism does not affect the steady state, so the species doing better in isolation

is predicted to prevail in competition. These models could therefore not explain the experimen-

tal observations (Costantino and Desharnais 1991, pp. 198–201).

Then models of population dynamics with discriminate cannibalism were developed (for

example, Leslie 1962). These models describe the evolution of the numbers of beetles from the
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two species as follows:

d ln(N1(t))
dt

= b1 exp(−c11N1(t)− c12N2(t))−µ1

d ln(N2(t))
dt

= b2 exp(−c21N1(t)− c22N2(t))−µ2,

where Ni(t) is the number of adults of species i at time t, bi is the rate at which new adults

are produced per adult, µi is the rate of adult mortality, and ci j is the rate at which an adult of

species J consumes eggs or pupae or species i (Costantino and Desharnais 1991, p. 194).

In these models, when there is egg-eating bias and the rates of interspecific cannibalism

exceed those of intraspecific cannibalism—that is, when c12 > c22 and c21 > c11—the model

can explain the experimental observations (Costantino and Desharnais 1991, pp. 201–207).

Indeed, with egg-eating bias, there are three steady states: one unstable steady state in which

the two species coexist, and two stable steady states in which only one or the other species

survives. If there is some randomness initially, or if the initial conditions vary, then the model

predicts that the two species cannot coexist, and that the species doing better in isolation does

not necessarily survive.

On last puzzle in the experiments of Park (1954) is that the initial conditions were always

the same: four beetles from each species. So it is surprising that the outcome of competition

was sometimes random. But in fact, randomness was present because Park used small initial

populations. With small populations, variations in the genetic and ecological properties of the

founding beetles mattered and effectively led to different initial conditions. For example, if a

founding beetle died quickly, the final outcome was necessarily affected. This randomness from

small numbers, combined with egg-eating bias, explains the laboratory observations.
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